ADC PayloadsCAS: 158440-71-2


ADC Payloads

简要描述:ADC Payloads供应
BOC Sciences成立于2005年,总部位于纽约。员工人数:250+,95%的员工硕士以上学历。是优秀的化学品供应商提供给学术界和工业界的产品在所有研究和生产领域。提供定制解决方案。

详细介绍

产品咨询

品牌 BOC Sciences 供货周期 两周
应用领域 医疗卫生,化工,生物产业

ADC Payloads供应

上海金畔生物科技有限公司专业代理进口品牌实验产品货号现货供应,欲购从速(敬请咨询)

BOC Sciences是BOCSCI Inc.的品牌。提供广泛的研究化学和生物化学物质,包括抑制剂,构件,GMP产品,杂质和代谢产物,兽药API,天然化合物,ADC,干细胞分子和手性化合物。

BOC Sciences提供广泛的研究化学和生物化学物质,包括抑制剂,构件,GMP产品,杂质和代谢产物,兽药API,天然化合物,ADC,干细胞分子和手性化合物。

我们擅长于广泛阵列的合成定制分子。我们专门从事手性合成(不对称催化、手性助剂、,生物催化,对映选择性,有机催化、手性池合成及手性拆分)我们为客户提供产品升级服务提高产品质量(再结晶,制备HPLC、手性HPLC、手性拆分)。


上海金畔生物新代理boc science中国的业务,boc science代理,boc science代理,boc science上海代理,boc science华南代理,boc science华东代理,boc science华西代理,boc science华北代理,

上海金畔生物科技有限公司,1.国内试剂耗材经销代理2.国外试剂的订购。可提供欧美实验室品牌的采购方案。3。提供加急物流处理,进口货物,最快交期1-2周。4.进出口货物代理服务。9公司代理众多有名生命科学领域的研究试剂、仪器和实验室消耗品品牌

质量保证,所有产品都提供售后服务。付款方式灵活。公司坚持“一站式”服务模式,为客户全面解决实验、生产、开发需求。公司整合国际与国内资源,加强网络建设,提高公司内部运作效率,为客户提供方便、快捷的服务。



公司突出创新思维,提高工作效能,减低运作成本,为客户提供优惠的价格。

ADC Payloads供应

抗体药物制备过程中最需要注意的事项有哪些?

抗体药物制备过程中最需要注意的事项有哪些?

抗体偶联药物是通过连接体将针对特定抗原的单克隆抗体与小分子细胞药物连接而成。它既具有传统小分子化疗的强大杀伤作用,又具有抗体药物的肿瘤靶向特性。自从第一个ADC(Mylotarg)被批准用于治疗CD33阳性急性髓系白血病以来,已经开发了几种用于治疗癌症的ADC。

从选择合适的抗体到最终产品,ADC的整个开发过程是一项艰巨且富有挑战性的任务。临床药理学是药物开发最重要的工具之一。使用该工具有助于找到产品的最佳剂量,从而保持产品在患者群体中的安全性和有效性。与其他小分子或大分子通常仅测量一个部分/代谢物进行药代动力学分析不同,ADC 需要测量多个部分来表征其 PK 特性。因此,深入了解 ADC 的临床药理学对于在患者群体中选择安全有效的剂量至关重要。

ADC 药代动力学概述

药代动力学是临床药理学和现代药物开发重要的一部分。药代动力学研究的主要目的是获得吸收、分布容积、清除率、半衰期、多次给药后的蓄积、各种疾病状态以及年龄、体重和性别对药物药代动力学的影响。信息。这些药代动力学参数可用于为患者设计最佳给药方案。

应该认识到,与小分子和治疗性蛋白(抗体/融合蛋白)不同,ADC 的 PK 非常复杂,因为 ADC 由多种成分组成。不仅要考虑单克隆抗体的PK,还要考虑细胞毒性分子的PK以及结合的物理和化学性质。由于单克隆抗体的分子量占90%以上,ADC不同成分的PK受其PK影响较大。总抗体 (ADC+mAb) 的 PK 特性提供了 ADC 稳定性和完整性的最佳评估。缀合物和偶联位点在维持 ADC 的稳定性和 PK 方面也发挥着重要作用。下表列出了 FDA 批准的 ADC 的特性和 PK。

ADC的药代动力学特征

一般来说,给药后体内会涉及四个过程。这些过程是吸收、分布、分解代谢和清除。

吸收

大多数抗体通常通过静脉注射或输注的方式给予,也可以通过皮下途径给予抗体。然而,对于ADC来说,目前的给药途径是静脉注射或输注。由于对细胞毒性有效负载的反应和细胞毒性物质的局部沉积,SC 给药可能不适合 ADC。

分配

药物在体内的分布可以用分布容积来描述。由于其大小和极性,抗体和 ADC 的分布通常仅限于血管和细胞间隙。

ADC的初始分布一般局限于血管内,分布体积一般等于血容量。随后,ADC 可以分布到间隙空间。此外,ADC的分布也会受到靶抗原表达和内吞作用的影响。

ADC在同一组织中的分布和积累可产生不良(毒性)药理作用,这是由于摄入ADC后细胞毒性药物或代谢物的释放。

分解代谢

ADC体内分解或代谢过程包括体内抗体分解代谢和小分子药物代谢。 ADC 在到达肿瘤细胞之前在细胞(不可切割连接体)或循环系统(可切割连接体)中释放效应分子。未结合的抗体和抗体片段沿着抗体的代谢途径,通过酶水解产生氨基酸,并被人体重复利用。

ADC裂解或分解代谢后可能形成的游离小分子药物/带有氨基酸残基的小分子药物/连接体的小分子药物代谢物将进一步经过肝脏CYP450酶代谢,潜在的药物也可能发生相互作用。

除了ADC本身的性质外,抗原表达、受体/细胞密度、FcRn介导的循环、Fcγ相互作用、受体介导的内吞作用、免疫原性等都会影响ADC的分解代谢。

清除

ADC也通过分解代谢和排泄被消除。 ADC通过特定途径进入溶酶体后可被降解,与靶标结合,释放出小分子药物后从体内清除;它也可以通过非特异性胞饮作用被清除,这涉及到 FcRn 的回收过程。

ADC、抗体、分子量较大的肽和氨基酸片段不能通过肾小球过滤和排泄,而是以氨基酸的形式被重新吸收和利用。游离的小分子药物、分子量较小的肽和氨基酸连接的小分子药物、分子量较小的抗体片段等可通过肾小球滤过排出体外。同时,小分子药物和代谢物也可以通过酶代谢消除或通过转运蛋白排泄到粪便中。

ADC 生物分析

ADC有多种成分,要表征这些成分的PK特性,需要几种分析方法,如下所述:

1.ELISA免疫分析测定结合物和总抗体的动力学曲线。
2.TFC-MS/MS,定量游离药物/代谢物。
3.高分辨质谱用于体内药物抗体比分析。

此外,有两种类型的 ELISA 免疫测定用于定量测量 ADC 分析物:第一种类型的分析测量总抗体,即 DAR 大于或等于零的 ADC。第二种分析方法测量药物结合抗体,定义为 DAR 大于或等于 1 的 ADC。

其他分析方法有尺寸排阻色谱法 (SEC) 和疏水相互作用色谱法 (HIC)。 SEC 是常用的液相色谱 (LC) 技术,用于确定聚集抗体的数量。该技术也可用于 ADC。尽管 HIC 是一种用于蛋白质分离、纯化和表征的传统技术,但该技术现在正用于 ADC 表征和分析。

细胞毒性有效负载

ADC细胞毒性有效负载应具有以下特征:

1.分子的有效负载应该小,缺乏免疫原性,并且可溶于水缓冲液,以便它们可以很容易地偶联。
2.细胞毒有效负载应具有适当的脂溶性。
3.有效负载的目标应位于小区内部。
4.有效负载在血液中应稳定。

目前,常用的细胞毒性药物效应分子有微管抑制剂(auristatins/maytansinoids)、DNA损伤剂(卡利刹霉素/duocarmycins/anthracyclines/吡咯并苯二氮卓二聚体)和DNA转录抑制剂(Amatoxin/Quinolinealkaloid(SN-38))。已批准上市的几款ADC药物总共使用了6种不同的小分子药物,其中3款ADC药物使用MMAE作为结合药物,2种药物使用卡利车霉素作为结合药物。 MMAF、DM1、SN-38、Dxd也被成功使用。

药物抗体比(DAR)

DAR 是指单个单克隆抗体上附着的有效负载分子的平均数量,通常在 2 至 4 个分子之间。在极少数情况下,通过使用亲水连接器有效负载(例如 Enhertus 和 Trodelvys)可以安全地实现高达 8 的 DAR。 DAR对于ADC的疗效判定非常重要,DAR可能影响药物在循环中的稳定性、PK以及ADC的毒性。

研究表明,与DAR值<6的ADC相比,DAR值高(7-14)的ADC具有更快的清除率和较低的体内疗效。 DAR 值及其对稳定性和 PK 的影响还取决于偶联位置和连接子的大小。

通常对赖氨酸或半胱氨酸进行修饰来生产ADC。赖氨酸是连接底物和抗体常用的氨基酸残基之一。赖氨酸通常存在于抗体表面,因此很容易偶联。

其他氨基酸如半胱氨酸、酪氨酸也可以修饰,利用马来酰亚胺修饰半胱氨酸合成ADC如Adcetriss、Polivys、Padcevs、Enhertus、Trodelvys和Blenreps。

链接器

Linker是ADC重要的组成部分,决定着ADC的药物释放机制、PK、治疗指标和安全性。早期的 ADC 连接体化学不稳定,例如二硫化物和腙。这些连接体在循环中不稳定,半衰期短,通常为一到两天。最新一代的连接体在体循环中更加稳定,例如肽和葡萄糖醛酸连接体。最常见的两种连接器如下:

可切割接头

裂解接头对细胞内环境敏感,通过细胞内分解代谢和解离的联合作用释放游离的效应分子和抗体,如酸裂解接头和蛋白酶裂解接头。它们通常在血液中稳定,但会在低 pH 值和富含蛋白酶的溶酶体环境中快速裂解,释放效应分子。此外,如果效应分子可以跨膜,则可以通过发挥潜在的旁观者效应来消除肿瘤。

不可切割的接头

不可切割连接子是新一代连接子。与可裂解接头相比,它具有更好的血浆稳定性。由于不可切割接头可以比可切割接头提供更高的稳定性和耐受性,因此这些接头可以减少脱靶毒性,并提供更大的治疗窗口。

免疫原性

在针对8种ADC的11项临床试验中,ADA的基线发生率在1.4%至8.1%之间,基线后ADA的发生率在0-35.8%之间。这些值在治疗性单克隆抗体的范围内。一般来说,血液肿瘤患者中 ADC 的 ADA 发生率低于实体瘤患者;大多数 ADA 都是针对 ADC 的单克隆抗体结构域。此外,在大多数患者中,这些 ADC 的半抗原样结构不会比治疗性单克隆抗体带来更大的免疫反应风险。

ADC药代动力学模型

应用模型方法可以整合PK、疗效和安全性数据,满足ADC药物研发不同阶段的需求,如:靶点选择、抗体亲和力、接头稳定性、动物对人的外推、剂量选择和调整、ER由于ADC具有多种清除途径(解离和分解代谢)以及多种分析物复杂的PK特性,其动力学模型也较为复杂。

不同的型号有不同的应用。例如,二室模型和PBPK模型可以用来描述ADC的稳定性特征,参数包括清除率、解离率和代谢率等。目前ADC药代动力学研究主要采用非房室模型、群体药代动力学模型、基于机制的模型、基于生理的模型等。

概括

在ADC药物的研发过程中,临床药理学起着非常重要的作用。通过生物分析技术的不断发展,全面地阐明ADC药物的PK/PD特性,对于推动更多低毒、高效的ADC药物的研发具有重要意义。重要的。 ADC药物也将在肿瘤治疗领域展现出更强大的优势。

全球ADC药物——光免疫疗法能否突围?

全球ADC药物——光免疫疗法能否突围?

近年来,抗体药物偶联物(ADC)以其优异的临床表现和市场回报受到广泛追捧。并以更高的热情在全球范围内保持发展。 ADC药物由三部分组成:抗体、效应分子(Payload,通常是细胞毒剂)、连接体。与传统药物相比,ADC药物在提高靶向性、减少副作用方面具有明显优势。

1.全球ADC上市及研究现状

截至2021年4月2日,全球有432种ADC药物在研。其中大部分处于临床前阶段,有108个产品处于临床阶段。

全球ADC药物进展阶段情况

全球ADC药物——光免疫疗法能否突围?

自2000年推出第一个ADC产品Mylotarg(吉妥珠单抗奥佐米星)以来,目前全球已有11个ADC产品获得批准。

2.治疗领域及靶点

在治疗领域,ADC药物的主要研发方向集中在抗肿瘤。

全球ADC药物——光免疫疗法能否突围?

其余治疗领域几乎没有竞争对手,但不乏主要的潜在产品。艾伯维正在开发的ABBV-3373,是阿达木单抗和糖皮质激素受体调节剂(GRM)形成的ADC药物,用于潜在治疗类风湿性关节炎(RA)。根据其2020年6月发布的IIa期实验数据,ABBV-3373可以在第12周带来比阿达木单抗更显着的DAS28 CRP评分改善。其安全性与已知的阿达木单抗的安全性相似。

在靶点选择方面,与已经上市的药物类似。目前,全球在研产品靶点分布较为分散,仅有Her2、EGFR、CD-19、TROP-2等靶点竞争激烈。

全球ADC药物靶点进展现状

全球ADC药物——光免疫疗法能否突围?

3.光免疫ADC

在效应分子方面,目前已上市和在研的ADC药物大多选择阿里他汀(MMAE、MMAF)、美登素(DM1、DM4)、加利车霉素等细胞毒素。一些制药公司也开始开展“非常规”效应器的开发工作。 2020年9月,乐天医疗研发的光免疫治疗ADC药物西妥昔单抗沙罗洛坎获批上市,为后续光免疫治疗ADC药物研发铺平了道路。

近红外光免疫疗法(NIR-PIT)是一种针对癌症的分子靶向光疗法。该疗法由针对癌细胞表面表达的抗原的单克隆抗体 (mAb) 和细胞杀伤性近红外光吸收染料 (IR700) 组成。

传统的免疫疗法,如免疫激活细胞因子疗法、检查点抑制、工程化T细胞等,并不直接破坏癌细胞,而是依赖于激活免疫系统。 NIR-PIT 可以选择性地破坏癌细胞,同时激活人体的免疫反应。

NIR-PIT 诱导的免疫原性细胞死亡

全球ADC药物——光免疫疗法能否突围?

抗体药物与肿瘤表面抗原结合后,在近红外光刺激下,IR700发生光诱导配体释放反应,释放出亲水性侧链,导致其余部分的疏水性显着增加。然后它会破坏细胞膜并引发针对癌细胞的快速且高度选择性的免疫原性细胞死亡(ICD)。

除了直接杀死癌细胞外,NIR-PIT诱导的ICD还可以导致垂死癌细胞的未成熟树突状细胞快速成熟,启动宿主抗癌免疫反应,并促进针对释放的抗原的CD8阳性T细胞的重新形成通过杀死癌细胞,进一步增强 NIR-PIT 的治疗效果。

IR700化学反应原理及偶联蛋白变化示意图

全球ADC药物——光免疫疗法能否突围?

西妥昔单抗沙罗洛康是光免疫ADC的产品,由水溶性硅酞菁衍生物IRDye700DX与西妥昔单抗连接而成。给药24小时后,药物特异性聚集在EGFR阳性肿瘤细胞表面。然后用690nm波长的近红外光照射肿瘤部位,诱导西妥昔单抗杀伤癌细胞,并激活免疫反应。

目前,该药物治疗复发头颈癌的I/IIa期临床试验(NCT02422979)已完成,Ⅲ期临床试验(LUZERA-301)已于2018年12月启动。

西妥昔单抗 sarotalocan 作用原理

全球ADC药物——光免疫疗法能否突围?

除西妥昔单抗sarotalocan外,全球共有5个免疫ADC项目在研,均处于临床前或药物发现阶段,且均使用IR700作为效应分子。

目前,ADC药物广阔的市场前景,在全球范围内掀起了相关产品的研发热潮。虽然上市产品数量较少,但处于研究阶段的产品已经出现了一些靶点拥挤和效应分子重复的现象。作为ADC领域的“少数研究”,光免疫ADC的临床和市场前景仍需经受时间的考验。然而,基于相关原理的新靶点和新的光激活效应分子的开发可能成为ADC赛道的新突破点。

G蛋白偶联受体ADC药物发展趋势

G蛋白偶联受体ADC药物发展趋势

G 蛋白偶联受体 (GPCR) 是一个由七种类型的跨膜结构域蛋白组成的大家族,表达于人类细胞表面。这些分子通过启动影响大基因家族表达的信号转导途径来响应和响应外部刺激。并调节一系列重要的生理过程和功能。

没有这些蛋白质,人类就无法生存。例如,如果没有β-肾上腺素能受体,我们就无法调节血糖。没有血清素受体,我们就无法体验幸福。许多生理功能都与GPCRs调控的信号通路有关。这些途径的功能障碍会导致许多疾病。如癌症、精神疾病、糖尿病、心血管疾病、炎症性疾病等。因此,无论是基础科学研究还是医药行业,GPCR蛋白都是研究的“热点”。

抗体药物偶联物(ADC)作用机制:ADC与细胞表面靶受体结合,靶受体内化形成内体并与细胞溶酶体融合。药物从溶酶体中释放并作用于其靶标(DNA 或微管)以杀死细胞。

中国科学院上海药物研究所所长蒋华良表示:“有了GPCR,就拥有了世界”。迄今为止,GPCR蛋白家族已鉴定出800多个成员。而针对GPCRs的药物销售额占全球药物市场的27%。下面的“样本药物”列出了一些已经商业化的GPCR相关药物。其中一些是处方药,另一些在药店出售。他们拯救了许多患者的生命、减轻了痛苦并恢复了健康。

科学家利用 X 射线晶体衍射技术阐明了许多 GPCR 的原子结构。如与心血管疾病和糖尿病相关的β2-肾上腺素受体、用于癌症免疫治疗的腺苷A2A受体;免疫系统调节 CCR5 趋化因子受体 P2Y1R。与血栓性疾病相关的嘌呤能受体,以及调节行为和情绪的D3多巴胺受体。所有这些都是治疗人类疾病的重要治疗靶点的例子。它们的结构信息为后续药物开发提供了理论基础。

早在2017年的数据显示,美国食品药品监督管理局(FDA)总共批准了475种GPCR靶向药物。占美国批准的所有药物的34%。尽管市场上有如此多的此类药物,但针对这一大蛋白质家族更多成员的新药研究正变得越来越激烈。靶向GPCR药物的适应症也从高血压、过敏、麻醉、精神分裂症等传统适应症拓展到阿尔茨海默病、肥胖等新领域。目前有321个靶向GPCR正在进行临床试验,其中66个(20%)药物针对新的GPCR靶点。

除了新的GPCR靶点外,针对新旧靶点的新方法也在探索中。迄今为止,大多数针对GPCR分子的药物都是小分子和低分子量的肽。然而,与小分子和肽相比,单克隆抗体(MAb)药物具有许多优势,特别是对于肿瘤学和免疫学适应症。靶向 GPCR 的优点包括:

1.目标明确,安全性提高。 (免疫原性可能是一个安全问题,但人或人源化单克隆抗体可以大大减少这种情况)

2.体内半衰期长。

3.通过效应器功能消除靶细胞的能力。这些效应器功能包括抗体依赖性细胞介导的细胞毒性(ADCC)、补体依赖性细胞毒性(CDC)和抗体依赖性细胞吞噬作用(ADCP)。

单域抗体、双特异性和多特异性抗体以及抗体-药物偶联物 (ADC)。这些不同类型的抗体可以靶向 GPCR 蛋白。因此,制药行业对开发针对GPCR分子的MAb药物以治疗GPCR相关疾病越来越感兴趣。至少有 74 个科学研究项目关注 37 个 GPCR 分子。共有57个单克隆抗体处于发现和临床前研究阶段,其中39个已进入临床研究。

另一种类型的 MoA 是通过所谓的效应器功能,通过抗体介导杀死表达给定受体的细胞。例如,mogamulizumab(Kyowa Hakko Kirin)经过专门设计,可增强表达 CCR4 的癌细胞的 ADCC 活性。由于 GPCR 广泛表达,并且蛋白质介导许多功能,因此经常探索针对 GPCR 的抗体用于各种甚至看似无关的适应症。

虽然单克隆抗体可以通过效应器功能杀死过度表达与其结合的抗原的癌细胞,但通过将有效的毒素附着到传统抗体药物上形成抗体-药物缀合物(ADC),可以进一步增强单克隆抗体的作用。有种杀戮的效果。 ADC与靶肿瘤细胞结合后,会被内化,然后释放结合的强力化学毒素来杀死细胞。

ADC的发展经历了20多年漫长而艰辛的过程。一路走来有很多成功和失败,通过技术创新和进步学到了很多东西。由于ADC由抗体、毒素和连接两者的连接分子三部分组成,因此与常规抗体和其他重组蛋白相比,其开发、生产和测试过程更加复杂。然而,FDA已经批准了8种ADC(上表2),其中一半是在过去一年批准的。即使在肿瘤领域之外,ADC的研发也非常活跃,目前已有8个领域的批准。

GPCR 靶点作为 ADC 药物的候选药物

尽管 GPCR 代表了已批准药物的最大蛋白靶标家族,但除某些内分泌和激素反应性肿瘤外,它们尚未广泛用作癌症治疗靶标。与此同时,尽管已经取得了巨大进展,但对开发癌症治疗新疗法的需求却在不断增加。随着人们进一步了解GPCR在癌症中的表达、结构和功能,针对GPCR的新疗法将会出现。

在癌细胞中表达增加的 GPCR 作为 ADC 靶点应该特别有吸引力。事实上,大多数 GPCR 在与配体或激动剂抗体结合后会引起构象变化,从而导致细胞内化。 GPCR 的快速内化是将其转变为有效 ADC 药物靶点的关键特征。荧光自动细胞分选 (FACS) 筛选可以帮助科学家发现具有这种激动剂特性的抗体,这些抗体可能是 ADC 的候选者。此外,某些肿瘤细胞高度表达突变的 GPCR,例如缺乏一或两个跨膜结构域的肿瘤细胞。如果能够分离出针对此类突变GPCR的特异性抗体,它们可能会发展成为有效的ADC候选药物,从而避免正常细胞表达正常的相应蛋白质。

LGR5是GPCR家族中第一个被ADC靶向的成员,在体内证明了有效的肿瘤疗效和安全性。此外,ADC 还可以减小肿瘤的大小和扩散,并在肠道肿瘤发生的基因工程模型中提高存活率。开发人员希望临床试验能够在不久的将来进一步证明他们的前景。

DS-6157 是一种针对 GPR20 的ADC 药物,GPR20 是一种在胃肠道间质瘤 (GIST) 中特异性表达的分离 GPCR。与TKI中的MoA不同,它可用于治疗对TKI治疗耐药的GIST患者。 DS-6157目前正在进行一期临床试验。

LegoChem Biosciences (LCB) 选择了三个战略性 GPCR 作为药物靶点。 LCB的技术基于位点特异性且血浆稳定的ADC平台,使用较短的额外氨基酸(CAAX)序列在抗体链末端创建位点特异性结合位点。异戊二烯转移酶将异戊二烯底物连接到 CAAX 序列的半胱氨酸残基上,创建连接子连接的结合位点。通过CAAX介导的烯丙基化,可以精确控制药物结合位点以及与抗体结合的药物数量,从而使开发人员可以获得具有明确定义的药物与抗体比率(DAR)的ADC分子。 Sorrento Therapeutics 使用这种新型 ADC 格式开发了三种针对 CCR2、CXCR3 和 CXCR5 的 GPCR。

GPCR作为ADC靶点的开发将面临许多挑战。除了GADC作为七跨膜糖蛋白的特性外,它还面临着将ADC开发为治疗剂的整体挑战。获得 GPCR 的特异性和高亲和力抗体更加困难,因为它们在普通条件下不溶,并且只有有限数量的细胞外表位来评估抗体。然而,一些公司正在开发创新策略来筛选 GPCR 特异性抗体。更新的 ADC 技术平台和 ADC 开发的成功临床经验将使这些公司能够克服相关挑战。

抗体药物偶联物 (ADC) 概述

抗体药物偶联物 (ADC) 概述

抗体-药物偶联物 (ADC)由所需的单克隆抗体、活性药物和适当的接头组成。抗体和药物之间适当的连接体维持ADC的稳定性并提供特定的桥梁,从而帮助抗体选择性地将药物递送至肿瘤细胞并在肿瘤部位准确地释放药物。
ADC PEG 连接体 的选择是靶标依赖性的,基于对所使用的活性药物(包括细胞毒素)、抗体-靶标抗原复合物的内化和降解以及缀合物的临床前体外和体内活性比较的了解。
单分散聚乙二醇 PEG是靶向治疗中应用广泛的一种连接子。PEG连接体具有高利用率、靶向性、调节PH值等特点。PEG连接体具有多种官能团选择,可以与不同的抗体和药物缀合,形成不同的连接体,如pH敏感连接体、二硫键连接体、 β-葡萄糖醛酸连接基…
单分散
胺-PEG-羧基作为小分子连接基,含有亲水基团,可以溶解在大多数溶剂中,因此胺基也广泛用于ADC设计中。此外,与匹配的抗体或药物连接的胺基可以作为pH敏感的连接体。