WAKO 019-19741 小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit

特色

小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit

作用原理及概述:
钙离子作为信号转导通道中的信使,在所有细胞包括中枢神经细胞的生命活动中起重要作用。钙离子与不同的钙结合蛋白结合后进行级联反应。Iba1是能与巨噬细胞和小胶质细胞发生特异性结合的钙结合蛋白,当这些细胞激活后,Iba1的表达量上调,因此Iba1通常作为鉴定小胶质细胞的标记物使用。近来研究发现,小胶质细胞除了提供营养、保护神经的作用外,还被证明可产生NO、TNF- α、IL-1 β等物质,因此将小胶质细胞定义为中枢神经系统中的巨噬细胞样吞噬细胞,具有重要的免疫细胞作用。当病原菌,病毒入侵中枢神经系统时会起免疫监视的作用。近来研究发现,该细胞可能与神经退行性疾病的发生和发展有关。本产品是可与小胶质细胞发生特异性反应的兔多抗,配合对星形胶质细胞有特异性的GFAP单抗,可进行双染色。
抗原: 合成肽(Iba1 的C 末端序列)
外观: TBS 溶液(1mg/ml)
提纯: 抗原亲和提纯
特异性: 对小胶质细胞、巨噬细胞特异反应。不会与神经元、星形胶质细胞发生交叉反应。
能与人、小鼠、大鼠Iba1反应。
用法: ① Iba1抗体,兔源(Immunocytochemistry 用)适合Immunocytochemistry。
只需1 ~ 2 μg/ml即可进行实验。
② Iba1抗体,兔源(Western blotting 用)适合Western blotting。
只需0.5 ~ 1μg/ml即可进行实验。
l 兔源细胞的双染色及同视野的相差显微镜图

绿色:Iba1抗体,兔源(Immunocytochemistry 用)(小胶质细胞)
红色:抗GFAP 抗体(星形胶质细胞)

Western blotting

Lane1:Iba1 20ng
Lane2:Rat Microglia(10μg)
Lane3:Rat Neuron(10μg)
Lane4:Rat Adult Brain(10μg)
一抗: Iba1抗体,兔源(Western blotting 用)(0.5μg/ml)
二抗: HRP 标记抗兔IgG
检测方法: 化学发光法 WAKO小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit 019-19741
货号 品名 用途 规格 备注
019-19741 抗 Iba1,小兔(Immunocytochemistry用) 免疫化学 50μg 来电咨询
016-20001 抗 Iba1,小兔(Western blotting用) 免疫化学 50μg 来电咨询
WAKO小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit 019-19741

WAKO小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit 019-19741

球体·类器官共培养的范式转移


球体·类器官共培养的范式转移

球体·类器官共培养的范式转移




Ginreilab Inc. 岛崎猛夫

◆前言

细胞培养方法种类繁多,例如,在培养皿上培养细胞,并集中分析同种细胞的单层静置培养法;通过搅拌培养基使细胞保持在悬浮状态进行培养的悬浮培养法;使用凝胶状基质进行培养的培养法等等。这些培养技术犹存已久,1962年,Boyden等人开发了细胞迁移分析法1),后被用于通过被称为细胞培养插件的培养基进行非接触式共培养法。1971年,立体培养细胞群开始有了“球体”2)的说法。

球体是指细胞通过相互粘附形成的简单集合体,并构建成三维结构的状态。顾名思义,「球(sphere)+oid」即指球状物体。一般而言,细胞会通过支架粘附于容器,若没有支架,或支架较弱时,就会相互粘附形成三维立体的结构。球体培养制备正是利用这一特点,不制作支架的方法。例如,使用非粘附性容器的制备方法;通过工学的微细加工技术使用结构体的方法;一边旋转培养器一边进行培养的旋转培养法;在液滴中进行立体构建的悬滴法等等3)

关于进行共培养或球体培养的理由,若能让细胞与细胞间进行直接或是间接交流(相互作用),就能阐明细胞是否发挥了单个细胞无法发挥的功能。

球体与下述的类器官,虽然经常使用相同意思来表达,但球体的功能性并不如类器官发达,严格来说,两者间有着明显的区别。

类器官「器官(organ)+oid」,即指类似于器官的物体。一般而言,它指三维培养干细胞所得的组织。最近,由干细胞分化而成的不同种类的分化细胞,以及原分化细胞混合制备而成的立体细胞群也被称为类器官。因此,无论原始细胞是否皆为干细胞,均可广义地描述为“利用细胞技术人为制造与器官类似的组织”。生物学上类器官是指 “使用干细胞或有助于器官形成的前体细胞等,通过药物和环境构建等方法人为模拟胚胎学中的生物学过程,具有自律性形成的器官样集合体”。各项研究表明,类器官可详细再现人类器官的结构和生理功能,能够用于阐明病理和药物开发。为顺应临床测试周期的缩减以及动物实验替代的趋势,类器官的研究盛行。以生物学研究为基础,结合被称为organ-on-a-chip的工学技术进行培养和分析的研究盛行,总称为仿生系统(microphysiological systems:MPS)。美国环境部提出2025年将动物实验减少30%,2035年完全消除动物实验的计划。2023年1月6日,美国FDA颁布了临床试验前无需进行动物实验,可采用使用细胞技术实验结果的法案4)。虽然颁布的法案与预期相符,但依然让人震惊。某种意义上,两者间的关系正如“动物实验=汽油车”,“细胞技术和类器官=电动车”。换言之,未来使用细胞技术的新药研究将会成为主流,球体培养、Organ-on-a-chip 、MPS技术则会成为范式转移的关键技术。

为使水平链接细胞共培养板UniWells5向Organ-on-a-chip/MPS系统进化,我们进行了开发。作为初级阶段的技术介绍,笔者将介绍水平方向连接的优点,以及运用其优点进行的球体和类器官的共培养。

1)UniWells水平方向连接的优点

作为共培养容器被广泛使用的插入式细胞培养板,原本是Boyden等人为了检测细胞移动能与浸润能而开发,被称为Boyden chamber1。其结构为两个桶状容器交叠,上侧的容器底面为滤膜。向下侧容器中的培养基中加入细胞引诱剂,并通过计数在滤膜上方培养的细胞穿透滤膜的孔移动到下方的细胞来检测浸润度。因为该容器可直接用于细胞共培养,后来也被长期使用。

       由于Boyden chamber是为了检测细胞的浸润以及移动能而开发,所以接种的细胞数量较少。细胞数量少的话,部分滤膜孔就不会被细胞堵塞,就可上下共用培养基。而细胞数多的话,就会堵塞滤膜孔,降低或停止共用培养基。然而,这一显而易见的事实并未受到太多关注,插入式细胞培养板仍成为了共培养的标准容器。并不是细胞数量少就无法共培养,但因为无法直接观察上侧容器中的细胞,所以一不留神细胞可能就会融合(细胞面积占有率高)。这时,就会在没有意识到这并不是共培养的情况下,进行结果分析。实际上,只要分析电子显微镜照片的结果就可进行确认(图1)。

球体·类器官共培养的范式转移

图1. 滤膜部分的电子显微镜图像

在UniWells中,由于细胞与过滤孔的位置相隔较远,即使细胞数量多也不会堵塞过滤孔。

2)关于三维共培养

MPS的目标是模拟人体。人体的各个器官处在不同的位置,无需直接接触,通过血液与组织液进行信息以及物质的双向交换,或是单向作用。为了模拟这些,需要迷你器官之间不经过直接接触就能够进行物质交换和影响的构造,以及共培养和单向作用的构造。此外,由于MPS为实验,所以还需评估实验误差。换言之,需要将类器官间的共培养和单向培养、多个类器官同时评估技术纳入重要技术。

在MPS中,已开发大量采用微通道技术的系统,而UniWells™ 采用的滤膜,就是通道长度非常短的微通道集合体。另外,通过上述的滤膜位置关系,UniWells™ 具有不堵塞通道,进行细胞和球体/类器官培养的优势。为了进一步优化UniWells,敝公司目前正致力于将其球体、类器官和MPS化。作为优化第一弹,于2023年发售可安装在UniWells上使用的PDMS制适配器UniWells-Cups(暂定名)。该产品利用了微加工技术和PDMS制造技术,与住友理工株式会社共同开发的UniWells 任选产品。可使用UniWells™ 共培养多个球体或类器官,还能进行各种组织学的评估。众所周知,球体和类器官各不相同。该系统可以同时共培养多个球体和类器官,因此可以在相同的实验条件和染色条件下同时评估球体阵列。

球体·类器官共培养的范式转移

图2. UniWells-Cups:Ginreilab Inc.和住友理工株式会社共同开发的产品

作为优化第二弹,预计今后将推出MPS设配器。

◆参考文献

1. Boyden, S. et al. : J. Exp. Med., 115 (3), 453 (1962).

2. Sutherland, R.M. et al. : J. Natl. Cancer. Inst., 46, 113 (1971).

3. Jubelin, C. et al. : Cell. Biosci., 12, 155 (2022).

4. The FDA Modernization Act 2.0. Available onlineより
4.
https://www.congress.gov/bill/117th-congress/senate-bill/5002 (2023年1月29日).

5. Shimasaki, T. et al. : Micromachines (Basel), 12 (11), 1431 (2021)

◆产品列表

产品编号

产品名称

用途

包装

384-14421

UniWells™ 水平共培养板

培养容器(材质:聚苯乙烯)

10 set

381-14431

UniWells™ 滤膜0.03 μm

专用滤膜(孔径0.03 μm)

50片

388-14441

UniWells™ 滤膜0.6 μm

专用滤膜(孔径0.6 μm)

50片

388-17001

UniWells™ 共培养板适配器96

96孔板尺寸支架

可放置8个 UniWells™培养板

1个

点击此处查看相关产品:水平连接细胞共培养板UniWells™

Millipore手持式细胞计数器 传感器 实验室耗材PHCC40050

Millipore手持式细胞计数器 传感器 实验室耗材

简要描述:

Millipore手持式细胞计数器 传感器,Sescriptionscepter电池计数器传感器,40μm-qty:50。

目录编号PHCC40050

商品名称

权杖

Sescriptionscepter电池计数器传感器,40μm-qty:50

OverviewSkepter传感器设计有一个微型制造的细胞传感区,能够通过细胞大小和细胞体积进行区分,分辨率可达亚微米和亚微米。

结合精密的液体处理通道和电子设备,权杖传感器准确可靠地提供细胞数量统计数据

应用程序

应用40um的权杖传感器用于在权杖2.0细胞计数器上计数6微米至36微米之间的颗粒。包括50个细胞计数器传感器。

关键应用

细胞计数

生物信息

采样容量50μL

物化信息

操作范围:10,000个颗粒/毫升-500,000个颗粒/毫升

尺寸

粒径6微米-36微米

电池尺寸范围为8.0-25.0μm

Millipore手持式细胞计数器 传感器

包装信息

材料尺寸50/pk

同仁化学BCECF试剂货号:B031 CAS号:85138-49-4| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

BCECF试剂货号:B031
2′,7′-Bis(carboxyethyl)-4 or 5-carboxyfluorescein
CAS号:85138-49-4
商品信息
储存条件:室温
运输条件:室温

SDS 
选择规格:下载

5mg

期货 

 
荧光探针检测方案

性质
注意事项
溶解例
参考文献
规格性状

性质

  5-羧基荧光素是一种通过将染料掺入细胞来研究细胞内pH变化的方法,但是当用于pKa = 7.0的细胞(如淋巴细胞)中时,染料会从细胞中洗脱出来,很难快速测定。 BCECF引入了两个羧乙基基团以减少从细胞中的洗脱。 适用于研究细胞内pH变化(λex= 490 nm,λem= 526 nm)。

注意事项

  ・如果将本产品以粉末形式取出并使用,由于其性质,静电等因素,它可能会粘附在容器内部,从而难以完全取出。

・对于粘附在容器上且无法取出的粉末,请在使用前将要使用的溶剂倒入容器中并溶解。

溶解例

2 mg / ml(甲醇)

参考文献

1) R. A. Steinhardt and D. Mazia, “Development of K+-conductance and Membrane Potentials in Unfertilized Sea Urchin Eggs After Exposure to NH4OH”, Nature1973241, 400.
2) T. J. Rink, R. Y. Tsien and T. Pozzan, “Cytoplasmic pH and Free Mg2+ in Lymphocytes”, J. Cell Biol.198295, 189.
3) A. M. Paradiso, R. Y. Tsien and T. E. Machen, “Na+ -H+ Exchange in Gastric Glands as Measured with a Cytoplasmic-trapped, Fluorescent pH Indicator”, Proc. Natl. Acad. Sci. USA198481, 7436.
4) S. Grinstein, B. Elder and W. Furuya, “Phorbol Ester-induces Changes of Cytoplasmic pH in Neutrophils: Role of Exocytosis in Na+ – H+ Exchange”, Am. J. Physiol.1985248, C379.
5) G. B. Zavoico, E. J. Cragoe and M. B. Feinstein, “Regulation of Intracellular pH in Human Platelets”, J. Biol. Chem.1986261(28), 13160.
6) G. R. Bright, W. Fisher, J. Rogowska and L. Taylor, “Fluorescence Ratio Imaging Microscopy: Temporal and Spatial Measurements of Cytoplasmic pH”, J. Cell Biol.1987104, 1019.
7) C. Aalkjaer and E. J. Gragoe Jr, “Intracellular pH Regulation in Resting and Contracting Segments of Rat Mesenteric Resistance Vessels”, J. Physiol.1988402, 391.
8) K. Tsujimoto, M. Semadeni, M. Huflejt and L. Packer, “Intracellular pH of Halobacteria Can Be Determined by the Fluorescent Dye 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein”, Biochem. Biophys. Res. Commun.1988155, 123.
9) M. A. Kolber, R. R. Quinones, R. E. Gress and P. A. Henkart, “Measurament of Cytotoxicity by Target Cell Release and Retention of the Fluorescent Dye Bis-carboxyethyl-carboxyfluorescein(BCECF)”, J. Immunol. Methods, 1988108, 255.
10) H. Harada, Y. Kanai, M. Anzai and Y. Suketa, “cAMP Activates Cl/HCO3 Exchange for Regulation of Intracellular pH in Renal Epithelial Cells”, Biochim. Biophys. Acta, 1991, 1092, 404.
11) C. C. Freudenrich, E. Murphy, L. A. Levy, R. E. London and M. Lieberman, “Intracellular pH Modulates Cytosolic Free Magnesium in Cultured Chicken Heart Cells”, Am. J. Physiol., 1992, 262(4), C1024.
12) K. Khodakhah and D. Ogden, “Functional Heterogeneity of Calcium Release by Inositol Triphosphate in Single Purkinje Neurones, Cultured Cerebellar Astorocytes, and Peripheral Tissues”, Proc. Natl. Acad. Sci. USA, 1993, 90, 4976.
13) G. Boyarsky, C. Hanssen and L. A. Clyne, “Superiority of in vitro Over in vivo Calibrations of BCECF in Vascular Smooth Muscle Cells”, FASEB J., 1996, 10, 1205.
14) S. A. Weston and C. R. Parish, “New Fluorescent Dyes for Lymphocyte Migration Studies Analysis by Flow Cytometry and Fluorescent Microscopy”, J. Immunol. Methods, 1990, 133, 87.
15) L. S. D. Clerck, C. H. Bridts, A. M. Mertens, M. M. Moens and W. J. Stevens, “Use of Fluorescent Dyes in the Determination of Adherence of Human Leucocytes to Endothelial Cells and the Effects of Fluorochromes on Cellular Function”, J. Immunol. Methods, 1994, 172, 115.

规格性状

规格性状:

该产品为橙色至红棕色粉末,可溶于甲醇。

纯度(HPLC):85.0%以上

溶于甲醇:测试合格

荧光光谱:测试合格

红外光谱:测试合格

NMR光谱:测试一致

处理条件:

1.储存方法:避光

关联产品

BCECF试剂货号:B031 CAS号:85138-49-4
Fluo 4-AM special packaging试剂
1-[2-Amino-5-(2,7-difluoro-6-acetoxymethoxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetra(acetoxymethyl)ester

Fluo 4-AM试剂
1-[2-Amino-5-(2,7-difluoro-6-acetoxymethoxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetra(acetoxymethyl)ester

BCECF试剂货号:B031 CAS号:85138-49-4
Rhod 2-AM试剂
1-[2-Amino-5-(3-dimethylamino-6-dimethylammonio-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester, chloride

BCECF试剂货号:B031 CAS号:85138-49-4
Fluo 3-AM试剂
Fluo3-AM1-[2-Amino-5-(2,7-dichloro-6-acetoxymethoxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetra(acetoxymethyl)ester

BCECF试剂货号:B031 CAS号:85138-49-4
Fura2-AM试剂
1-[6-Amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranylo

同仁化学Calcein-AM/PI细胞双染试剂盒货号:C542 活死细胞双染试剂盒| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

Calcein-AM/PI细胞双染试剂盒货号:C542
活死细胞双染试剂盒
Calcein-AM/PI Double Staining Kit
商品信息
储存条件:-20度保存
运输条件:室温

下载说明书
SDS下载

选择规格:
500 tests
3000 tests

现货

细胞染色

Calcein-AM/PI细胞双染试剂盒货号:C542 活死细胞双染试剂盒

Calcein-AM/PI细胞双染试剂盒货号:C542 活死细胞双染试剂盒

产品解说
活动进行中
试剂盒内含
产品概述
荧光特性
染色例
最佳浓度摸索
操作步骤
注意事项
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.2.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.3.    FerroOrange    细胞亚铁离子检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    ROS Assay Kit    活性氧检测

 

试剂盒内含

                                                                     500 次            3000 次

・Calcein-AM Reagent                             200 μg x 1        1 mg x 1

・PI Stock Solution (1.5 mmol/l)              200 μl x 1         1 ml x 1

・DMSO                                                    200 μl x 1         1 ml x 1

产品概述

Calcein-AM/PI细胞双染试剂盒内含两种染料:Calcein-AM和Propidium Iodide (PI)。这个试剂盒可在荧光显微镜下同时观察在同一个细胞培养皿中的活细胞和死细胞。Calcein-AM可透过细胞膜,通过活细胞内的酯酶作用脱去AM基团,产生的Calcein (钙黄绿素) 发出强绿色荧光,因此活细胞在荧光显微镜下可被检测到绿色荧光。另一方面PI可以通过受损的细胞膜进入到死细胞内并嵌入细胞的DNA双螺旋从而产生红色荧光,因此死细胞会被检测到红色荧光。除了用荧光显微镜外,也有报道可以用流式细胞仪和荧光酶标仪来进行定量检测。

荧光特性

Calcein-AM : λex=490 nm , λem=515 nm

PI : λex=530 nm , λem=580 nm

染色例

                                                                           细胞染色实例

Calcein-AM/PI细胞双染试剂盒货号:C542 活死细胞双染试剂盒

(a)                                     (b)                                      (c)

a)  Calcein-AM染FTC细胞(活细胞单染)

b)  PI染HCT116细胞(死细胞单染)

c)  Calcein-AM、PI染MHD-1 细胞(活死细胞双染)

最佳浓度摸索

由于不同细胞种类、细胞浓度的染色条件不同,我们建议自行摸索一下Calcein-AM和PI的最适浓度。

Calcein-AM和PI的最佳浓度是根据不同的细胞种类而定,通过以下的操作,我们可以找到不同细胞染色试剂的最佳浓度:

1. 通过在0.1%皂苷或0.1-0.5%毛地黄皂苷中培养10 min或通过在70%乙醇中培养30 min制备死细胞。

2. 用0.1-10 μM PI溶液染死细胞,以便找到仅针对细胞核染色而不对细胞质染色的PI浓度。

3. 用0.1-10 μM Calcein-AM溶液染死细胞,以便找到不对细胞质染色的Calcein-AM浓度,再以此浓度的Calcein-AM对活细胞染色以检验活细胞是否被染色。

操作步骤

以HeLa细胞为例

制备1 mmol/l的Calcein-AM储存液

【500 次】

将200 μl DMSO加入到含200 μg Calcein-AM粉末的管中,用移液器吹打溶解。

【3000 次】

将1 ml DMSO加入到含1 mg Calcein-AM粉末的管中,用移液器吹打溶解。

※Calcein-AM储存液需要避光,在-20℃密封保存。

 

制备染色工作液

将Calcein-AM储存液和PI储存液恢复至室温后使用。

在5 ml的PBS(-)中加入10 μl Calcein-AM储存液和15 μl PI储存液,混匀制成工作液。此时Calcein-AM的浓度为2 μmol/l,而PI的浓度为4.5 μmol/l。

 

染色步骤

1、 用Trypsin-EDTA消化细胞。

2、 通过离心收集细胞(1,000 rpm,3 min)。

3、 去除上清液,加入PBS(-)制备细胞悬液(105 – 106 cells/ml为宜)。

4、 重复步骤2和步骤3数次以消除培养基中的酯酶活性。

5、 取100 μl 染色工作液与200 μl 细胞悬液混合,在37℃培养15 min。

6、 在490±10 nm激发波长下同时观察黄绿色荧光的活细胞和红色荧光的死细胞。另外用545 nm激发波长单独观察死细胞。

注意事项

1、 由于本试剂盒中的Calcein-AM Reagent 粉末和PI Stock Solution量很少,有可能会粘在盖子或管壁上,开封前请先涡旋以使其振落下来。

2、 由于Calcein-AM储存液对潮气敏感,请在使用后密闭Calcein-AM储存液的盖子。如果不能一次用完,建议分装保存,例如分装成10 μl/管,用封口膜封口,并用铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。

3、 配制好的染色工作液请在当天使用。

4、 PI有疑似致癌性,使用前应注意以下几点:

1) 使用时请带好手套,口罩,防护眼镜等,不要接触到或呼吸到。

2) 当PI不慎接触到皮肤时,请立刻用大量的水冲洗。

3) 处理方法

清洗容器的清洗液和废液请按照实验室的有毒有害物质的处理方法进行处理,或按照以下方法处理:

・用UV照射的方法进行分解

・用次氯酸钠氧化分解后,进行中和处理

参考文献

1. A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration,

Materials Today, 2020, doi.org/10.1016/j.mattod.2019.12.005

2. Mitochondria-Targeted Artificial “Nano-RBCs” for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation,

Advanced Science, 2018, 5, 1800049

3. 4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices,

Advanced Functional Materials, 2019, 29(51), 1906569

4. Magnetic Hyperthermia-Synergistic H2O2 Self-Sufficient Catalytic Suppression of Osteosarcoma with Enhanced Bone-Re

generation Bioactivity by 3D-Printing Composite, Advanced Functional Materials, 2019, 1907071

5. A Substitution-Dependent Light-Up Fluorescence Probe for Selectively Detecting Fe3+ Ions and Its Cell Imaging Application,

Advanced Functional Materials, 2018, 28(35), 1802833

6. An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy,

ACS Nano, 2019, 13(4), 4379-4391

7. Near-Infrared Light-Triggered Sulfur Dioxide Gas Therapy of Cancer, ACS Nano, 2019, 13(2), 2103-2113

8. Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation,

ACS Nano, 2018, 12(4), 3780-3795

9. Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic

Imaging-Guided Cancer Therapy, ACS Nano, 2017, 11(4), 3797-3805

10. Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor, ACS Nano, 2017, 11(9), 9467-9480

11. Multifunctional Bismuth Selenide Nanocomposites for Anti-Tumor Thermo-Chemotherapy and Imaging,

ACS Nano, 2016, 10(1), 984-97

12. Molecular Responses of Human Lung Epithelial Cells to the Toxicity of Copper Oxide Nanoparticles Inferred from Whole

Genome Expression Analysis, ACS Nano, 2011, 5(12), 9326–9338

13. Living functional hydrogels generated by bioorthogonal cross-linking reactions of azidemodified cells with alkyne-modified

polymers, Nature Communications, 2018, 9, 2195

14. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds,

Nature Communications, 2019, 10(1), 2060

15. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered

immunotherapy, Biomaterials, 2019, 219, 119370

16. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration,

Biomaterials, 2019, 207, 61-75

17. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative

properties for implant application, Biomaterials, 2019, 212, 98-114

18. Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II

biowindow, Biomaterials, 2019, 206, 101-114

19. Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous

NIR irradiation, Biomaterials, 2018, 155, 54-63

20. Cooption of heat shock regulatory system for anhydrobiosis in the sleeping chironomid Polypedilum vanderplanki,

Proc. Natl. Acad. Sci., 2018, 115(10), E2477-E2486

21. Wnt Inhibitor Dickkopf-1 as a Target for Passive Cancer Immunotherapy,

Cancer Research, 2010, 70(13), 5326-36

22. Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT

imaging and photothermal therapy/radiotherapy of cancer, NPG Asia Material, 2016, 8, e273

23. 2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics,

Theranostics, 2018, 8(6), 1648-1664

24. Connexin43 Hemichannels Contribute to Cadmium-Induced Oxidative Stress and Cell Injury,

Antioxidants & Redox Signaling, 2011, 14(12), 2427-39

25. Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO2-P2O5(M=Mg,Zn,Sr) bioactive

glass scaffolds, Acta Biomaterialia, 2011, 7(10), 3638-3644