同仁化学Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02
葡萄糖摄取检测试剂盒
葡萄糖代谢、葡萄糖摄取
商品信息
储存条件:0-5°C
运输条件:常温

特点:

 

● 检测灵敏度高

● 操作简便,用时短

● 可以用荧光酶标仪做高通量筛选

● 荧光染料泄露少,数据重现性高

下载说明书
产品文献
代谢宣传资料
相关资料
SDS下载
葡萄糖摄取检测

选择规格:
1 set

现货

灵敏度高

酶标仪多样品检测

数据重现性高

葡萄糖检测试剂盒(点击查看)

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

产品解说
活动进行中
产品概述
产品优势
与传统法的比较
相关产品区别
实验例
常见问题Q&A
规格性状
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Viability Assay Kit – Luminescent Detection    细胞增殖/毒性检测-发光法(CCK-L)

NO.2.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.3.    Cell Counting Kit-8     细胞增殖毒性检测  

NO.4.    DALGreen – Autophagy Detection    细胞自噬检测

NO.5.    FerroOrange    细胞亚铁离子检测

 

产品概述

细胞通过摄入各种各样的营养物质并在胞内的代谢作用下产生能量。营养物代谢的过程随着细胞外环境、细胞状态、细胞种类的不同亦不尽相同。近年来的研究发现,营养代谢不仅与能量的产生密切相关,还与基因表达等各种各样的细胞调节机制有关。葡萄糖是最重要的一种营养物质,细胞摄取葡萄糖的过程对于研究和理解细胞机能非常重要。细胞摄取葡萄糖的评价方法主要是放射性同位素示踪法。但是由于放射性同位素示踪法操作繁杂,泛用性并不高。另外,还有一种使用2-Deoxy-D-glucose(2-DG)的酶循环法,该方法虽然可以进行孔板检测,但是无法用于荧光显微镜和流式细胞仪观察。因此,最近常用的方法是通过葡萄糖类似物2-NBDG的荧光检测法1)。然而,2-NBDG也有荧光强度弱、灵敏度低的问题,而且被细胞摄取的2-NGDG还有从细胞中向外泄漏的情况出现。同仁化学研究新开发的荧光葡萄糖类似物Glucose Uptake Probe-Green是一种比2-NBDG灵敏度更高的葡萄糖摄取能力检测试剂。而且使用本试剂盒中包含的Washing and Imaging (WI) Solution可以抑制探针从细胞内泄漏,得到重现性更高的实验数据。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

产品优势

与传统方向相比的优势! 4大特征

由于采用高亮度的荧光染料,相较于传统方法(2-NBDG)可以在更短时间内进行高灵敏度检测。

① 高灵敏度

2-NBDG在水中的荧光强度很低,而本试剂盒采用的荧光染料可以进行高灵敏度的葡萄糖摄取能力检测。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

<观测条件>

细胞: A549细胞

检测仪器:荧光显微镜

检测滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

② 快速检测

使用高亮度的Glucose Uptake Probe-Green,即使使用2-NBDG完全相同的实验步骤,也可以大幅缩短实验时间。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

操作的前处理、染色(进入细胞内的过程)的步骤只需要清洗3次,非常简便

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

③  荧光酶标仪的多样品检测

2-NBDG很难用于荧光酶标仪的检测,而本试剂盒可用于荧光酶标仪的高通量筛选实验。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

<检测条件>

细胞:A549细胞

Ex: 488 nm; Em: 520 nm

④  减少荧光染料的泄漏

使用试剂盒附带的WI Solution清洗细胞,可以抑制染料进入细胞后的泄漏,得到重现性更高的数据。

使用HBSS清洗细胞时

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

使用WI Solution清洗细胞时

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

(Scale Bar: 50 μm)

<观测条件>

细胞:A549细胞

检测仪器:荧光显微镜

检测滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

与传统法的比较

        Glucose Uptake Probe-Green和2-NBDG都可以用于荧光显微镜和流式细胞仪的检测。而相比较于2-NBDG的激发波长,Glucose Uptake Probe-Green对于488 nm的激发光以及GFP, FITC滤光片的适用度更高。

产品名 荧光

显微镜

荧光

酶标仪

流式

细胞仪

染料滞留时间 荧光特性
Glucose Uptake Assay Kit-Green 1 h※ λex: 507 nm, λem: 518 nm
2-NBDG × 30 min以下※ λex: 465 nm, λem: 540 nm

※A549细胞的检测结果,不同的细胞种类,染料的滞留时间可能会有差异。

相关产品区别

与Glucose Assay Kit的不同点

Glucose Uptake Probe-Green和Glucose Assay Kit-WST(货号:G264)的不同点。

1.Glucose Assay Kit-WST可以定量检测细胞上清液中葡萄糖的消耗量。

Glucose Uptake Assay Kit无法定量检测葡萄糖。

2.Glucose Uptake Assay Kit-Green可短时间内检测葡萄糖摄取能力的差值。

Glucose Assay Kit-WST无法在短时间内检测葡萄糖量的变化。

Glucose Assay Kit-WST与本试剂盒的差别,通过下面的检测实例来说明。

实验例:用葡萄糖摄取抑制剂(Cytochalasin B)处理的HepG2细胞的葡萄糖消费量和葡萄糖摄取能力的检测。

实验的流程和检测结果:

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

实验例

实验例1:Cytochalasin B对葡萄糖摄取的抑制作用

HepG2细胞经过葡萄糖转运蛋白抑制剂Cytochalasin B处理后,使用本试剂盒对葡萄糖摄取能力的抑制作用进行高灵敏度观察以及数值化的检测。

荧光显微镜观察

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

(Scale Bar: 50 μm)

<观测条件>

细胞:HepG2细胞

使用培养基:MEM (5.5 mmol/l Glucose)

培养条件:5 µmol/l Cytochalasin B / MEM (5.5 mmol/l Glucose, 10% FBS), 37℃, 24 h

染色条件:Glucose Uptake Probe (500倍稀释)/DMEM (0 mol/l Glucose), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

<检测条件>

Ex: 488 nm; Em: 520 nm

实验例2:Insulin(胰岛素)对细胞葡萄糖摄取能力的促进

胰岛素对脂肪细胞(adipocyte)的葡萄糖摄取能力的影响通过本试剂盒进行高灵敏度检测。

荧光显微镜观察

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

(Scale Bar: 50 μm)

<观测条件>

细胞:mouse adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

刺激条件:0 or 1 µmol/l Insulin / DMEM (0 mmol/l Glucose , serum free), 37℃, 15 min

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪检测

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

<检测条件>

Ex: 488 nm; Em: 520 nm

※由于脂肪细胞的特性,很难在孔板上均匀分布,所以实验数据会有一些孔间差。

<实验操作>

1.脂肪细胞分别接种到不同的ibidi 96孔板中,过夜培养。

2.用不含葡萄糖的DMEM培养基清洗细胞2次后,加入不含葡萄糖的培养基(0 or 1 μmol/l Insulin)。

3.在37℃下培养15 min。

4.加入用不含葡萄糖的培养基500倍稀释的Probe solution, 37℃下培养15 min。

5.用预冷至4℃的WI Solution(1x)清洗3次后,再次添加WI Solution(4℃)。

6.分别用荧光显微镜和荧光酶标仪检测。

实验例3:前脂肪细胞和细胞脂肪细胞的葡萄糖摄取能力的比较

使用本试剂盒对前脂肪细胞(preadipocyte)和脂肪细胞(adipocyte)的葡萄糖摄取能力进行高灵敏度检测。

荧光显微镜观察

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

(Scale Bar: 50 μm)

<观测条件>

细胞:preadipocyte, adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪检测

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

<检测条件>

Ex: 488 nm; Em: 520 nm

※由于脂肪细胞的特性,很难在孔板上均匀分布,所以实验数据会有一些孔间差。

<实验操作>

1.前脂肪细胞和脂肪细胞分别接种到不同的ibidi 96孔板中,过夜培养。

2.用不含葡萄糖的DMEM培养基清洗细胞2次后,加入不含葡萄糖的培养基。

3.在37℃下培养15 min。

4.加入用不含葡萄糖的培养基500倍稀释的Probe solution, 37℃下培养15 min。

5.用预冷至4℃的WI Solution(1x)清洗3次后,再次添加WI Solution(4℃)。

6.分别用荧光显微镜和荧光酶标仪检测。

 

实验例4:饥饿培养引起的细胞自噬和葡萄糖摄取变化

用自噬体染料DAPRed和自噬溶酶体染料DALGreen染色HeLa细胞后,用不含氨基酸的培养基培养3小时诱导细胞自噬。通过DAPRed和DALGreen的荧光强度增高确认细胞发生了细胞自噬,另外通过使用Glucose Uptake Probe-Blue发现细胞摄取葡萄糖的能力上升。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

(Scale Bar: 50 μm)

 

<检测条件>

荧光显微镜

Blue: Ex = 340-380 nm, Em = 435-485 nm

Green: Ex = 450-490 nm, Em = 500-550 nm

Red: Ex = 533-557 nm, Em = 570-640 nm

常见问题Q&A

Q1: Glucose Uptake Probe-Green具体是通过哪种葡萄糖转运蛋白进入细胞的?
A:对于具体的每一种葡萄糖转运蛋白的特异性目前还没有详细的数据。
Q2:目前有过检测实例的细胞有哪些?
A:目前的检测实例细胞系请参考下表:
细胞种类 Probe stock solution

的稀释倍率

染色时间
人肺腺癌细胞 A549 x 500 15 min
人肝癌细胞 HepG2 x 500 15 min
前脂肪细胞 preadipocyte(3T3-L1) x 500 15 min
脂肪细胞 adipocyte(3T3-L1) x 500 15 min
恶性黑色肿瘤细胞 MO5 x 500 15 min
小鼠成肌细胞 C2C12 x 500 5 min
人星形胶质瘤细胞 U-251 MG x 500 15 min
人子宫颈癌细胞 HeLa x 500 15 min
小鼠肺癌细胞 3LL x 50000 15 min
T细胞 CD4+ T cell x 50, x500 15 min
小鼠巨噬细胞 J774.1 x 500 15 min
线虫 N2 x 500 90 min
Q3:Glucose Uptake Probe-Green被细胞摄入后,会被分解或代谢掉吗?
A:染料的荧光部分非常稳定,实验范围内的操作不会造成分解。另外,类葡萄糖的部位,从结构上考虑可能会被Hexokinase(己糖激酶)磷酸化,除此以外应该不会参加任何代谢反应。
Q4:Glucose Uptake Probe-Green被活细胞摄入后,可以进行细胞固定的操作吗?
A:由于荧光探针会从细胞内漏出,染色后无法进行细胞固定。
Q5:用荧光酶标仪检测时候,对孔板有什么特别要求吗?
A:需要使用荧光检测用的细胞培养板。
Q6:Probe working solution可以长期保存吗?
A:Probe working solution无法长期保存,请现配现用。Probe stock solution冷冻可以保存一个月。
Q7:无法观察到荧光信号变化的时候,应该怎么办?
A:预实验的时候可以先从稀释浓度(x250~x1,000)、染色时间(5 min~1 h)范围内进行摸索。
Q8:荧光背景高的时候,应该怎么办?
A:可能是由于有未被细胞摄入的残留荧光染料。请用WI Solution再多进行一次清洗操作。
Q9:Glucose Uptake Probe-Green对细胞有毒性吗?
A:使用同仁化学研究所的Cell Counting Kit-8(货号:CK04)对A549细胞的Glucose Uptake Probe-Green细胞毒性进行了检验,没有发现细胞毒性的产生。
Q10:用WI solution清洗之后,荧光染料可以在细胞内停留多长时间?
A:一般在室温下可以保持在细胞内1 h左右,不同的细胞种类,时间可能会有一定差别。
Q11:可以对葡萄糖进行定量检测吗?
A:本产品不能用于葡萄糖的定量检测。如果需要定量检测培养基中的葡萄糖的消耗量或者细胞内的葡萄糖量,可以使用同仁化学研究所的Glucose Assay Kit-WST(货号:G264)。

 

Q12:可以对被细胞摄入的染料进行定量吗?
A:不可以对细胞摄入的染料进行定量。本试剂盒是葡萄糖摄取能力强弱或增减的检测试剂盒。
Q13:如果无法通过葡萄糖的竞争性抑制细胞探针的摄取,该如何解决?
A:竞争性抑制是否发生取决于每个细胞中的葡萄糖转运蛋白的表达水平和类型。(例如:HepG2细胞)Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

在这种情况下,使用2-脱氧葡萄糖(2-DG)进行预处理可能会在葡萄糖竞争抑制方面产生差异。 请参考Glucose Uptake Assay Kit-Green(产品代码:UP02)的使用示例。

2-DG预处理对探针摄取的抑制和葡萄糖竞争性抑制(HepG2细胞)

1.将细胞接种在培养皿或微孔板中,并在5% CO₂培养箱(37°C)中培养过夜。

2.除去培养基[DMEM (10% FBS,高葡萄糖)]后,加入50 mmol/l 2-DG/培养基,并 在5% CO₂培养箱(37℃)中培养细胞2小时。

3.清洗细胞两次。

4.加入预热的DMEM(无葡萄糖,无血清)并将细胞在5%CO₂中孵育 在培养箱(37°C)中培养15 min。

5.除去上清液后,加入预热的探针溶液并在5% CO₂中孵育 在培养箱(37°C)中培养15 min。

6.除去上清液后,用冷却的WI溶液(1x)洗涤细胞两次。

7.除去上清液后,加入冷却后的WI溶液(1x),并在室温下培养 5分钟。

8.除去上清液后,加入冷却的WI溶液(1x)。

9.荧光显微镜下观察细胞。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

Q14: 以下为不同细胞添加抑制剂后,葡萄糖摄取能力检测实验。
Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

规格性状

            Glucose Uptake Probe-Green  ×1

WI Solution (50X)   5 ml ×1

供参考的可测次数

每个试剂盒大约可检测12枚35 mm dish或1枚96孔板

参考文献

编号 文献 IF
1 Enhanced   aerobic denitrification performance with Bacillus licheniformis via secreting   lipopeptide biosurfactant lichenysin, Chemical Engineering   Journal,2022,434:134686 2022 13.3
2 Genetically   engineered probiotics as catalytic glucose depriver for tumor starvation   therapy 2023 10.8
3 Remodeling   on adipocytic physiology of organophosphorus esters in mature adipocytes 2022 9.9
4  Simple Fluorescence Assay for Cystine Uptake   via the xCT in Cells Using Selenocystine and a Fluorescent Probe, ACS   Sensors,2021, 6(6):2125-2128 2021 7.7
5 N-Caffeoyltryptophan   enhances adipogenic differentiation in preadipocytes and improves glucose   tolerance in mice 2023 3.7

同仁化学氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
氨基酸摄取能力检测试剂盒
Amino Acid Uptake Assay Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 使用荧光显微镜、荧光酶标仪或流式细胞仪即可快速检测

● 简便操作即可检测氨基酸摄取能力

※注意:您选择的孔板类型会对实验结果产生重大影响。并非所有孔板都与本检测方法兼容。 

您可以下拉参考网站“常见问题Q&A”,查看推荐的孔板及其对检测结果的影响。

下载说明书
产品文献
宣传资料下载
学习资料

选择规格:
20tests
100tests

现货

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

产品解说
规格性状
产品概述
运用领域
操作步骤
实验例
与传统方法比较
关联产品
常见问题Q&A
产品文献

产品解说

 

规格性状

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

产品概述

氨基酸是合成蛋白质和核酸的重要来源,对于增殖活性异常活跃的癌细胞来说尤其重要。不仅如此,癌细胞由于其自身糖酵解途径的亢进,造成乙酰辅酶A(Acetoacetyl-CoA)供应的减少,更加剧了对TCA循环来源之一的氨基酸的需求。基于此方面的研究发现,癌细胞中氨基酸转运体LAT1(L-type amino acid transporter 1)的表达明显增高,说明氨基酸的大量摄取是癌细胞的普遍特征之一。这一发现也有望成为癌症药物研发的新靶点。

在癌症免疫治疗领域,治疗效果不仅与癌细胞的代谢变化有关,免疫细胞的代谢调控也至关重要。例如,随着免疫细胞的衰老,代谢平衡的改变会导致免疫细胞对癌细胞的杀伤能力减弱。因此,通过调控免疫细胞的代谢来改善免疫治疗效果的研究也十分盛行。

氨基酸类似物(BPA)通过氨基酸转运体吸收到细胞后,探针穿透细胞膜并与氨基酸类似物结合,发出荧光(λex=360 nm,λem=460 nm)。本试剂盒可使用荧光显微镜、荧光酶标仪和流式细胞仪检测,通过可视化和数值化的检测评价细胞摄取氨基酸的能力,以及氨基酸转运体抑制剂的筛选。氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

本试剂盒是在日本大阪府立大学切畑光统(Kirihata Mitsunori)教授提供情报和指导下开发的产品。

运用领域

抑制氨基酸的吸收是癌症药物开发和筛选的靶点之一。此外,通过比较正常细胞和癌细胞的氨基酸吸收能力,还可以了解癌细胞的恶性程度及其细胞特征。氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

操作步骤

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

实验例

使用本试剂盒检测BCH(氨基酸转运体抑制剂)对HeLa细胞摄取氨基酸能力的阻碍作用。氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

<检测条件>

细胞:HeLa cells

培养基:MEM (5.5 mmol/l Glucose)

培养条件:1 mmol/l BCH/HBSS (Hanks’ Balanced Salt Solution), 37℃, 30 min

检测仪器:荧光酶标仪 (Ex=340-380 nm, Em: 435-485 nm)

检测仪器:荧光酶标仪 (Ex=360 nm, Em: 460 nm)

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

<检测条件>

检测仪器:流式细胞仪 (Ex=405 nm, Em: 425-475 nm)

与传统方法比较

与传统的同位素示踪法和代谢组学检测法相比,操作时间大幅减少。

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

关联产品

产品名 包装 价格 货号
 Glucose Uptake Assay Kit-Blue 1 set 3,980 UP01
    Glucose Uptake Assay Kit-Green 1 set 3,980 UP02
Glucose Uptake Assay Kit-Red 1 set 3,980 UP03

常见问题Q&A

 

Q:推荐什么类型的微孔板?
A:我们推荐以下几种微孔板

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

微孔板的类型对检测结果有何影响,请参考【Q&A:微孔板的类型会影响结果吗?】获取更多信息。

 

Q:微孔板的类型会影响结果吗?
A:是的。并非所有微孔板都与该测定兼容,有些微孔板可能无法进行某些测量(参见参考数据)。

建议使用以下板检测

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

<参考:微孔板之间的比较>

使用Ibidi板和其他制造商的微孔板,我们研究了HeLa细胞在氨基酸转运蛋白抑制剂BCH(2-氨基双环[2.2.1]庚烷-2-羧酸)存在下摄取氨基酸的能力。然而,我们无法确认BCH对吸收的抑制,因为与推荐的Ibidi板相比,在其他制造商的微孔板中观察到更高的背景。

荧光显微镜观察

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

荧光酶标仪检测结果

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

 

 

Q:BPA是通过哪种转运蛋白进入细胞内的?
A:有文献报道BPA是通过LAT1, LAT2, ATB0,+转运进入细胞的(Wongthai P et al., “Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2”, Cancer Sci., 2015, Mar;106(3):279-86)。此外,同仁化学也通过实验验证了BCH等LAT1的抑制剂、leucine等LAT1的底物对BPA摄取的抑制作用。

 

 

 

Q:已经有检测实例的细胞系有哪些?
A:贴壁细胞有HeLa, A549, HepG2, MCF-7, C2C12, MEF, U251;悬浮细胞有MOLT4。

 

Q:BPA被细胞摄入后,是否会被分解或代谢掉?
A:BPA的构造非常稳定,实验操作范围的过程中不会被分解。
Q:BPA被细胞摄入后,能否进行固定化操作?
A:由于探针会从细胞内向细胞外泄漏,所以无法进行染色后的固定化操作。

 

Q:BPA被细胞摄入后,是否会在特定部位积累?
A:被细胞摄取的BPA均匀的分布在细胞内。

 

Q:BPA uptake solution,Working solution能否长时间保存?
A: BPA uptake solution,Working solution无法长期保存,请现配现用。
Q:如果荧光信号没有变化,我该怎么办?
A:主要可能的原因有以下两点:      ①细胞本身对BPA solution的摄入能力较低。此时建议尝试提高BPA solution

的浓度。(5~50倍稀释)

②Working solution发生变质,请重新配置Working solution,保证现配现用。

Q:如果荧光背景较高, 我该怎么办?
A: 检测环境中可能含有未被细胞摄入的BPA。此时建议用HBSS清洗后再检测。
Q:BPA是否可以定量检测?
A:无法进行定量检测,本染料是评价细胞摄取氨基酸能力高低或增减的试剂。

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

产品文献

1、T. Watanabe, Y. Sanada, Y. Hattori, and M. Suzuki, “Correlation between the expression of LAT1 in cancer cells and the potential efficacy of boron neutron capture therapy”, 2022, J. Radiat. Res., doi:10.1093/jrr/rrac077.

2、Wencan Zhang,Xu Cao,Xiancai Zhong,Hongmin Wu,Yun Shi,Mingye Feng,Yi-Chang Wang, David Ann,Yousang Gwack,Yate-Ching Yuan,Weirong Shang ,and Zuoming Sun,”SRC2 controls CD4+ T cell activation via stimulating c-Myc-mediated up-regulation of amino acid transporter Slc7a5″,2023PNAS【11.1】doi:10.1073/pnas.2221352120.

关联产品

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit
糖酵解/氧化磷酸化检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
Lactate Assay Kit-WST试剂盒
乳酸检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒
氧消耗量检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
Glucose(葡萄糖)摄取能力检测试剂盒-Green
葡萄糖摄取检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence
ADP/ATP比率检测试剂盒

同仁化学代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

代谢

细胞内代谢系统(糖酵解系统,TCA回路和电子转移系统)的分析对于理解细胞状态非常重要。
糖代谢
脂质代谢
线粒体呼吸
氨基酸代谢

品名货号用途

Glycolysis/JC-1 MitoMP Assay Kit G272 糖酵解(乳酸生成量)和线粒体膜电位(JC-1)同时检测
糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit G270 方便快捷的检测糖酵解能、细胞代谢途径转移、细胞对糖酵解途径和氧化磷酸化途径的依赖程度
Glucose(葡萄糖)摄取能力检测试剂盒-Blue UP01 葡萄糖摄取能力检测(蓝色荧光)
Glucose(葡萄糖)摄取能力检测试剂盒-Green UP02 葡萄糖摄取能力检测(绿色荧光)
Glucose(葡萄糖)摄取能力检测试剂盒-Red UP03 葡萄糖摄取能力检测(红色荧光)
Glucose Assay Kit-WST试剂盒 G264 葡萄糖含量检测
Lactate Assay Kit-WST试剂盒 L256 乳酸检测试剂盒
α-Ketoglutarate Assay Kit-Fluorometric K261 对细胞内的α-KG进行定量检测

脂肪酸摄取测定试剂盒——Fatty Acid Uptake Assay Kit UP07 脂肪酸摄取检测
Lipi-Blue试剂 LD01 脂滴检测(蓝色)
Lipi-Green试剂 LD02 脂滴检测(绿色)
Lipi-Red试剂 LD03 脂滴检测(红色)
Lipi-Deep Red试剂 LD04 脂滴检测(深红色)
Lipid Droplet Assay Kit-Blue试剂 LD05 脂滴荧光检测(蓝色)
Lipid Droplet Assay Kit-Deep Red试剂 LD06 脂滴荧光检测(深红色)
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence A552 检测细胞中ADP与ATP的比率
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒 E297 氧消耗量检测
Cell Counting Kit-Luminescence试剂盒 CK18 ATP活性检测
Glutamine Assay Kit-WST试剂盒 G268 谷氨酰胺的定量检测
Glutamate Assay Kit-WST试剂盒 G269 谷氨酸的定量检测
NAD/NADH Assay Kit-WST试剂盒 N509 NAD/NADH检测试剂盒
NADP/NADPH Assay Kit-WST试剂盒 N510 NADP/NADPH检测
氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit UP04 检测细胞摄取氨基酸的能力
胱氨酸摄取能力检测试剂盒—Cystine Uptake Assay Kit UP05 胱氨酸摄取能力检测

各项代谢指标完全解读

糖酵解氧化磷酸化代谢关联指标

脂质代谢关联指标

氨基酸代谢关联指标

线粒体相关指标

衰老相关指标

 

当试图了解细胞状态时,分析各种细胞内代谢途径【例如糖酵解系统、三羧酸(TCA)循环、电子运输链等】非常重要。代谢产物和能量来源,【例如葡萄糖、乳酸和NAD(P)+/NAD(P)H】都是用于分析细胞内代谢的指标。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

 

细胞代谢与疾病

近年来,针对癌症、糖尿病等疾病模型的细胞内代谢研究受到了广泛关注。下面是不同疾病的 代谢指标变化的详细介绍。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

癌症

癌细胞在无限增殖的同时保持着活跃的细胞代谢,不断吸收大量的营养物质进行蛋白质、核酸、能量(如ATP)的合成。即使在不利的环境下(低氧气、低营养),癌细胞仍然可以通过改变代谢途径而存活下来。近年来,针对癌细胞的代谢途径的研究也越来越多。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

糖代谢有两种途径:线粒体氧化磷酸化和糖酵解(Glycolysis)。正常哺乳动物细胞在有氧条件下,糖酵解被抑制。而癌细胞即使在氧气充足的情况下,糖酵解仍然十分活跃(瓦格博效应,Warburg effect)。因此,癌细胞大量的摄取糖分并在亢进的糖酵解作用下大量产生乳酸。由于糖酵解途径在生成ATP时并不需要氧气,所以即使在低氧环境下,癌细胞仍然可以增殖。另一方面,癌细胞的线粒体利用氨基酸和脂肪产生NADH,NADH除了用于产生ATP以外,还主要用于抵御氧化还原作用。癌细胞的线粒体有着异常的机能,这会引起线粒体膜电位的上升(过极化)以及过剩的活性氧的产生。因此需要产生大量的谷胱甘肽来维持胞内的氧化还原平衡。而谷氨酰胺 (Glutamine)和胱氨酸(Cystine)是谷胱甘肽合成的必要来源,癌细胞不断的过量摄入这些氨基酸。另外,由于需要 NADPH来维持还原型谷胱甘肽,癌细胞会不断利用从糖酵解、戊糖磷酸途径(pentose phosphate pathway)以及线粒体产生的NADH来维持高浓度的NADPH。

*请注意,上述内容是概括性的癌细胞代谢特征的描述。随着癌细胞种类的不同和环境的变化会有一定差别。

参考文献

下面是一些癌细胞代谢的综述性文献,供初次接触这一领域的研究人员参考。

1) 糖酵解:M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation”, Science, 2009, 324, 1029.

2) 氨基酸代谢、ROS:P. Koppula, Y. Zhang, and B. Gan, “Amino Acid Transporter SLC7A11/xCT at the Crossroads of Regulating Redox Homeostasis and Nutrient Dependency of Cancer”, Cancer Commun., 2018, 38, 12.

3) 氨基酸代谢:E. L. Lieu, T. Nguyen, S. Rhyne, and J. Kim, “Amino Acids in Cancer”, Exp. Mol. Med., 2020, 52, 15.

4) 线粒体、ROS、NADPH:F. Ciccarese and V. Ciminale, “Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells”, Front. Oncol. 2017, 7, 117.

5) NADH:A. Chiarugi, C. Dolle, R. Felici, and M. Ziegler, “The NAD Metabolome-A Key Determinant of Cancer Cell Biology”, Nat. Rev. Cancer, 2012, 12, 741.

⚫ 葡萄糖(Glucose)代谢障碍与抗癌作用

⚫ 氨基酸代谢障碍和抗癌作用

⚫ 1个试剂盒,匀浆和非匀浆自由选择

⚫ 癌细胞免疫与代谢

抑制葡萄糖代谢和抗癌作用

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

癌细胞主要使用糖酵解系统产生ATP,因此针对糖酵解系统的抗癌药物的开发已经进行了很长时间。目前还没有开发出有效的抗癌药物,但糖酵解仍然是癌细胞的主要药物靶点。因此,糖酵解是了解癌细胞代谢的最重要途径。

葡萄糖转运蛋白(GLUT)是药物发现中糖酵解靶蛋白的一个例子。由于癌细胞通过葡萄糖转运蛋白摄取大量的糖,因此可以通过直接抑制葡萄糖转运蛋白来抑制糖酵解。另外,抑制葡萄糖饥饿的活性、糖酵解系统的酶 (己激酶:HK、乳酸脱氢酶:LDH等) ,和抑制糖酵解系统的最终产物乳酸向细胞外的流出也是有效的手段。

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

产品用途 产品名称
货号
葡萄糖检测试剂盒 Glucose Assay Kit-WST G264
乳酸检测试剂盒 Lactate Assay Kit-WST L256
NAD/NADH 检测试剂盒 NAD/NADH Assay Kit-WST N509
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST N510
JC-1 线粒体膜电位检测试剂盒 JC-1 MitoMP Detection Kit MT09

 

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

抑制氨基酸代谢与癌症治疗

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

在增殖活跃的癌细胞中,氨基酸是蛋白质和核酸合成所必需的营养素。由于癌细胞中来自糖酵解系统的乙酰CoA的供给降低,因此积极利用氨基酸

作为TCA循环的营养源。研究表明,癌细胞通过氨基酸转运蛋白的表达量增加,吸收大量氨基酸。特别是谷氨酰胺是谷胱甘肽的原料和TCA循环中必需的α-酮戊二酸的来源,并且针对谷氨酰胺的摄取和代谢(谷氨酰胺分解)的药物开发备受关注。此外,我们发现与许多必需氨基酸摄取有关的氨基酸转运蛋白LAT(L-type amino acid transporter)在许多癌细胞中过度表达,并有望作为新的药物发现目标。
与其他氨基酸不同,氧化还原控制所需的半胱氨酸主要由胱氨酸转运蛋白xCT吸收到细胞中。癌细胞会产生大量的活性氧,从而增加抗氧化剂谷胱甘肽的产生,维持氧化还原平衡。因此,通过抑制谷胱甘肽产生的途径,可以改变细胞内氧化还原平衡,并诱导细胞死亡,如铁吞作用。此外,谷胱甘肽还有助于耐药性,因此涉及谷胱甘肽产生的途径是药物发展的主要目标。特别是最近,长期用作抗炎药的磺胺沙拉嗪和癌症的分子靶向治疗药物索拉非尼布抑制了xCT,通过xCT抑制的铁吞作用引起了人们的关注。

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
NAD/NADH 检测试剂盒 NAD/NADH Assay Kit-WST N509
JC-1 线粒体膜电位检测试剂盒 JC-1 MitoMP Detection Kit MT09
谷氨酰胺检测试剂盒 Glutamine Assay Kit-WST G268
谷氨酸检测试剂盒 Glutamate Assay Kit-WST G269
GSSG/GSH检测试剂盒 GSSG/GSH Quantification Kit G263
脂质过氧化物检测试剂 Liperfluo L248
线粒体过氧化物检测试剂 MitoPeDPP M466
自噬检测试剂 DAPGreen – Autophagy Detection D676

抑制脂肪酸代谢和抗癌作用

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

细胞增殖活跃的癌细胞当然需要大量的脂质。因此,细胞内的脂肪酸合成和细胞外的脂肪酸摄取是很活跃的。因此,许多癌细胞增加了脂质滴的积累。针对癌细胞的治疗目标主要是与脂肪酸的产生相关的途径,并开发了许多抑制剂。

另一方面,癌细胞利用脂肪酸的β氧化来有效地产生能量,以补充糖酵解系统低效能量的产生。因此,以脂肪酸的β氧化为目标的药剂开发也在进行中。

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
脂滴检测试剂盒  Lipid Droplet Assay Kit

– Blue/Deep Red

LD05/LD06
脂滴荧光染料 Lipi-Blue/Green/Red/Deep Red LD01/LD02/LD03/LD04
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST  N510
GSSG/GSH检测试剂盒 GSSG/GSH Quantification Kit G263

癌症免疫治疗与细胞代谢

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

T细胞在消除癌细胞的免疫系统中起着核心的作用。近年来发现,T细胞的分化和活化等调节机制也与细胞内的代谢有关,因此癌症免疫相关的代谢研究也越发活跃起来。癌细胞需要吸收大量营养才能维持增殖活性,而活化的T细胞同样需要大量营养(尤其是葡萄糖)才能消除癌细胞。所以,活化的T细胞与癌细胞存在局部的“葡萄糖竞争”。众所周知,癌细胞可以通过表达活性化T细胞表面的免疫检查点PD-1来抑制T细胞的活性。而且,最近的研究发现,在这个相互作用中,T细胞的葡萄糖摄取也会受到抑制。癌细胞通过抑制免疫细胞的代谢来获得免疫逃逸,因此癌症免疫方面的研究并不局限于癌细胞,对免疫细胞的代谢研究也十分重要。

参考文献 

1) Z. Yin, L. Bai, W. Li, T. Zheng, H. Tian, and J. Cui, “Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic stratety”, J. Exp. Clin. Cancer Res. 2019, 38, 403.

2) L. Almeida, M. Lochner, L. Berod, and T. Sparwasser, “Metabolic pathways in T cell activation and linear differentiation”, Semin. Immunol. 2016, 28(5), 514.

3) A. Kumar and K. Chamoto, “Immune metabolism in PD-1 blockage-based cancer immunotherapy”, Int. Immunol., 2020 Jul 5;dxaa046.

4) D. G. Franchina, F. He, and D. Brenner, “Survival of the fittest: Cancer challenges T cell metabolism”, Cancer Lett., 2018, 412, 216.

5) N. Patsoukis, K. Bardhan, P. Chatterjee, D. Sari, B. Liu, L. N. Bell, E. D. Karoly, G. J. Freeman, V. Petkova, P. Seth, L. Li, and V. A. Boussiotis, “PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation”, Nat. Commun., 2015, 6, 6692.

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
葡萄糖检测试剂盒 Glucose Assay Kit-WST G264
乳酸检测试剂盒 Lactate Assay Kit-WST L256
谷氨酰胺检测试剂盒 Glutamine Assay Kit-WST G268
谷氨酸检测试剂盒 Glutamate Assay Kit-WST G269

糖尿病

抑制葡萄糖代谢和抗癌作用

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

在高血糖状态下,细胞内葡萄糖浓度升高,多元醇途径代谢增强。这会过 度消耗NADPH,减少还原型谷胱甘肽(GSH)。 其结果是,氧化应激增加,促进细胞损伤。

参考文献 

M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism”, DIABETES, 2005, 54, 1615.

关联产品

 

产品用途 产品名称
货号
NAD/NADH检测试剂盒  NAD/NADH Assay Kit-WST N509
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST N510
谷胱甘肽检测试剂盒 GSSG/GSH Quantification Kit G263

衰老

 

⚫ 衰老相关疾病与乳酸、NAD+的关系

⚫ DNA损伤引发的细胞衰老

⚫ 谷氨酰胺代谢与细胞衰老

衰老相关疾病与乳酸、NAD +的关系

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

近年来,NAD+与衰老之间的关系 引起了人们的关注。单个小鼠的 衰老模型中,在肝脏等中观察到 的NAD+量减少1),并且据报道, 抑制NAD +合成酶会导致衰老细胞 功能下降2)。此外,NAD+量的减 少导致线粒体功能下降3),而线粒 体功能的降低表明NAD+量减少, 从而导致衰老细胞的功能下降4)。

DNA损伤引发的细胞衰老

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

在衰老的细胞中,由于线粒体功能下 降,主要由厌氧的糖酵解通路产生ATP, 因此乳酸的产生量增加7)。 DNA损伤是细胞衰老导致线粒体功能 障碍的原因之一。 DNA损伤的积累会激活 DNA修复机制并增加NAD+消耗。 NAD+量的减少会降低SIRT1活性,这 是维持线粒体功能的重要因素,导致线粒 体功能的降低(电子转移的抑制→ATP产 生/ NAD+量的减少)3),8)。

谷氨酰胺代谢和细胞衰老

抑制肿瘤的menin通过靶向依赖mTORC1的代谢激活来预防效应CD8T细胞功能障碍9)。

Menin是一种肿瘤抑制因子,在预防衰老和疲劳等T细胞功能障碍中起着重要作用。当Menin缺乏时, mTORC1被激活,并通过糖酵解系统和谷氨酰胺降解增强氧化磷酸化,导致CD8T细胞功能障碍。此外, 谷氨酰胺代谢中间产物α酮戊二酸有助于维持mTORC1激活和促进细胞衰老(SA-β-gal活性增强)。谷氨酰 胺-α-酮戊二酸通路在诱导CD8T细胞功能障碍中发挥重要作用,并发现Menin有抑制T细胞衰老的可能性。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
细胞衰老检测试剂盒 (荧光显微镜 / 流式细胞仪用)  Cellular Senescence Detection Kit – SPiDER-βGal SG03
细胞衰老检测试剂盒 (荧光酶标仪用) Cellular Senescence Plate Assay Kit – SPiDER-βGal SG05
JC-1 线粒体膜电位检测试剂盒  JC-1 MitoMP Detection Kit MT09

同仁化学MitoPeDPP试剂货号:M466| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

MitoPeDPP试剂货号:M466
3-[4-(Perylenylphenylphosphino)phenoxy]propyltriphenylphosphonium iodide
MitoPeDPP
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

 

● 特异性的在细胞中线粒体内聚集

● 可以检测线粒体膜内的脂质过氧化物

● 可以在488 nm和535 nm的荧光波长下进行检测

下载说明书

选择规格:
5μg*3

现货

 
铁死亡检测方案

MitoPeDPP试剂货号:M466

MitoPeDPP试剂货号:M466

产品概述
检测原理
实验例
参考文献

产品概述

MitoPeDPP是一种新型荧光染料,由于其具有三苯基膦结构,因此可以穿过细胞膜并在线粒体中聚集。

聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。由于氧化的MitoPeDPP

(Ox-MitoPeDPP) 的激发和发射波长分别是452 nm和470 nm,可以减小样品的光损伤和自发荧光,因此利用

荧光显微镜MitoPeDPP可以检测活细胞中的脂质过氧化物。

特点

1.特异性的在细胞中线粒体内聚集

2.可以检测线粒体膜内的脂质过氧化物

3.可以在488 nm和535 nm的荧光波长下进行检测

* 本产品由福冈大学化学系的Dr. Shioji开发

*由于MitoPeDPP量极少不宜看到,可以通过观察MitoPeDPP DMSO溶液的颜色是否为黄色来判断。

检测原理

MitoPeDPP可以穿过细胞膜并在线粒体中聚集。聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。

MitoPeDPP试剂货号:M466

实验例

1.MitoPeDPP和线粒体染色试剂MitoBright共同染色的实施例

在HeLa细胞中添加t-BHP(氢过氧化叔丁基),检测脂质过氧化物

波长(wavelength/band pass)

MitoPeDPP:470/40(Ex),525/50(Em)

MitoBright DeepRed:600/50(Ex),685/50(Em)

结果证实在HeLa细胞内的线粒体中,MitoPeDPP受t-BHP氧化后会发出荧光。另外通过与线粒体染色试剂(MitoBright Deep Red:MT08)的共染色,确认了MitoPeDPP的荧光是定位在线粒体中。

MitoPeDPP试剂货号:M466

2.检测添加Rotenone产生的脂质过氧化物

向HeLa细胞[μ-slide,8孔(由Ibidi制造)]中添加MitoPeDPP之后,添加Rotenone溶液并使用荧光显微镜观察。实验结果证实,添加Rotenone后,检测到细胞中产生了脂质过氧化物。

Rotenone的刺激时间:0 min(左),90 min(中),180 min(右)

MitoPeDPP试剂货号:M466

上部)荧光图,下部)明场图

3.神经细胞使用MitoPeDPP的实验例

A.荧光显微镜检测

向NIE-115细胞(小鼠神经芽细胞瘤)添加异黄素,诱导Ca2+流入细胞内,并通过MitoPeDPP的荧光染色来观察线粒体膜内的脂溶性过氧化物的产生。实验结果证实添加了异霉素的实验组相比对照组来说荧光更强。

MitoPeDPP试剂货号:M466

B. 平均荧光强度数据比较

为了量化对照组细胞和添加了离子霉素的细胞的荧光强度,对两组数据进行基于平均荧光强度的比较。

结果证实,加入离子霉素后30分钟的细胞对比对照组的细胞,观察到的荧光强度显着增加。

数据提供(Free Radical Research, in press)

MitoPeDPP试剂货号:M466

参照芝浦工业大学系统理工学院 福井浩二副教授、中村沙希[参考文献3]

4.MitoPeDPP反应的选择性

在不含细胞的反应体系中,MitoPeDPP可以与各种过氧化物如H2O2,t-BHP和ONOO- 反应,但是在细胞中,积

累在线粒体中的MitoPeDPP可以被t-BHP氧化而释放出较强荧光 (图3A),却和其它ROS或RNS反应很弱 (图3B)。

A) 在HepG2细胞中加入MitoPeDPP培养15 min,然后用100 μmol / l的t-BHP处理。

B) 在HepG2细胞中加入MitoPeDPP培养15 min后,加入ROS、RNS诱导剂。

分别加入100 μmol / l (H2O2,NO和ONOO-诱导剂)和10  μmol / l  PMA(O2-.诱导剂) 。

左边为明场图,右边为荧光图

* t-BHP:tert-Butylhydroperoxide; PMA, Phorbol myristate acetate;

SIN-1, 3-(Morpholinyl)sydnonimine, hydrochloride;

NOC 7, 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene

波长/带通滤波器:470/40 (Ex), 525 /50 (Em)

MitoPeDPP试剂货号:M466

参考文献

1) K. Shioji K, Y. Oyama, K. Okuma and H. Nakagawa, “Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria.”, Bioorg Med Chem Lett., 2010, 20, (13), 3911.

2) S. Oka, J. Leon, K. Sakumi, T. Ide, D. Kang, F. M. LaFerla and Y. Nakabeppu, “Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease”, Scientific Reports ., 2016, DOI: 10.1038/srep37889 , .

3) S. Nakamura, A. Nakanishi, M. Takazawa, S. Okihiro, S. Urano and K. Fukui, “Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: Analysis of a time-lapse live cell imaging system”, Free Radical Research., 2016, 50, (11), 1214.

4) M. Akimoto, R. Maruyama, Y. Kawabata, Y. Tajima and K. Takenaga, “Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERKdependent necroptosis”, Cell Death Dis., 2018, 9, 804.

5) M. Álvarez-Córdoba, A. Fernández Khoury, M. Villanueva-Paz, C. Gómez-Navarro, I. Villalón-García, J. M. Suárez-Rivero, S. Povea-Cabello, M. Mata, D. Cotán, M. Talaverón-Rey, A. J. Pérez-Pulido, J. J. Salas, E. M. Pérez-Villegas, A. Díaz-Quintana, J. A. Armengol, J. A. Sánchez-Alcázar , “Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation.”, Mol. Neurobiol. ., 2019, 56, (5), 3638.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

同仁化学抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit| 日本DOJINDO

上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商

抗氧化能力检测试剂盒 (DPPH法 )货号:D678
DPPH Antioxidant Assay Kit

DPPH Antioxidant Assay Kit
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

● 即用型试剂盒、数据重现性好

● 配制试剂所需的时间大幅缩短

● 检测结果不易受pH, 溶剂等因素影响

下载说明书
产品文献

选择规格:
100tests
500tests

期货

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit
抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

规格性状
产品概述
操作时间大幅缩短
检测原理
检测步骤
检测结果不受各因素影响
检测例
参考文献
FAQ

规格性状

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

产品概述

近年来的研究发现,人体内的抗氧化能力的降低与各种疾病的产生息息相关,因此人们对于具有抗氧化能力的功能食品的需求越来越高。 根据日本高知大学岛村等人的文献报道 1),使用稳定的自由基 DPPH (2,2-Diphenyl-1-picrylhydrazyl)作为底物的抗氧化能力检测法是数据重现性最好的一种方法。本试剂盒依据岛村老师的检测方法,将DPPH法的过程进行了改良和标准化,解决了以往实验中孔间差较大、试剂配制过程繁冗等问题。

本试剂盒在日本高知大学农林海洋学部的岛村智子老师的指导下开发而成 。

1) T. Shimamura et al., Anal. Sci., 2014, 30, 717-721

操作时间大幅缩短

DPPH和Trolox在溶液状态下都不稳定,需要现配现用。特别是作为底物的DPPH,一般还需要检测吸光度来确定含量,因此操作的步骤和时间都十分冗长。本试剂盒已经将所需的试剂准备好并分成小份单独包装,检测前只需要溶解定容即可开始实验,大幅缩短了操作步骤和时间。(DPPH的溶解需要超声波振荡发生器)

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

检测原理

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

检测步骤

将试剂盒样品加至96孔板,培养30分钟后即可上机检测。

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

将试剂盒样品加至96孔板,培养30分钟后即可上机检测。

检测结果不受各因素影响

用DPPH法检测抗氧化能力的时候,溶液中的pH以及溶剂的浓度等因素会对检测结果产生影响。本试剂盒通过优化操作步骤、调整溶液添加顺序等方法最大程度抑制pH和溶剂浓度对检测结果的影响。

pH对检测结果的影响                                                样品溶剂对检测结果的影响

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

试剂盒内含的Assay Buffer可以保证检测反应在一定         样品量只占检测溶液体积的1/10(20 μl),因此样品的

的pH下进行。                                                                 溶剂无论是水还是无水乙醇,都不影响最终检测结果。

IC50值的复孔差

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

如果只用样品的抗氧化能力IC50值来评价,比较容易出现检测结果的波动。用标准物质(Trolox)和样品同时检测,通过Trolox等价活性值(TEAC)来评价的话,可以得到重现性高的检测结果。

TEAC( μg TE/μg)= Trolox IC50 (μg/ml)/ Sample IC50( μg/ml)

检测例

不同检测机构之间的检测结果的差异

下面3个不同的检测机构,使用本试剂盒检测已知的抗氧化物:没食子酸、儿茶酸、桑色素。用比色皿通过分光光度计检测Trolox等价活性值(TEAC),结果显示3个检测机构之间的检测结果基本上没有差异。

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

参考文献:T. Shimamura et al., NipponShokuhin Kagaku Kogaku Kaishi, 2007, 54, 482 – 487

分光光度计和酶标仪检测结果的一致性

按照上面的实验的同样的方法,改用酶标仪和96孔板进行检测并计算Trolox等价活性值(Trolox),检测结果也高度一致。

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

参考文献

1、Enjuro Harunari, Chiaki Imada, Yasuhiro Igarashi, “Konamycins A and B and Rubromycins CA1 and CA2, Aromatic Polyketides from the Tunicate-Derived Streptomyces hyaluromycini MB-PO13T”, J. Nat. Prod., 2019, 82, (6), 1609-1615.

2、Hiroki Ishida, Naoki Yamasaki, Yuuki Otsuka, Daichi Mori, Tomoko Shimamura, Takuya Hasegawa, Shuhei Ogo, Tadaharu Ueda, “Electrochemical Antioxidant Capacity Measurement: A Downsized System and Its Application to Agricultural Crops”, Anal. Sci., 2021, doi:10.2116/analsci.21P217.

3、M. A. Maky and T. Zendo, “Generation and Characterization of Novel Bioactive Peptides from Fish and Beef Hydrolysates”, Appl. Sci., 2021, doi:10.3390/app112110452.

4、S. Kato, K. Kuwata, “Pro-/anti-oxidative properties of dopamine on membrane lipid peroxidation upon X-ray irradiation”, Radiat. Phys. Chem., 2021, doi:10.1016/j.radphyschem.2021.109518.

5、F. F. Sofian, N. Kikuchi, T. Koseki, Y. Kanno, S. Uesugi, Y. Shiono, “Antioxidant p-terphenyl compound, isolated from edible mushroom, Boletopsisleucomelas”, Biosci., Biotechnol., Biochem., 2022, doi:10.1093/bbb/zbab224.

6、S. Jin, S. Kim, D. S. Kim, D. Son and M. Shin, “Optically Anisotropic Topical Hemostatic Coacervate for Naked-Eye Identification of Blood Coagulation”, Adv. Funct. Mater., 2022, doi:10.1002/adfm.202110320.

7、Mohamed Abdelfattah Maky,Takeshi Zendo,“Identification of a Novel Bioactive Peptide Derived from Frozen Chicken Breast Hydrolysate and the Utilization of Hydrolysates as Biopreservatives“,Bioactive Peptides in Health and Disease【A special issue of Biology (ISSN 2079-7737).】,2023,doi.org/10.3390/biology12091218

FAQ

Q:是否可以用涡旋振荡或者移液器吹打来溶解DPPH?
A:由于DPPH较难溶解,无法用涡旋振荡或者移液器吹打完全溶解。溶解不充分是造成误差的原因,请务必用超声振荡完全溶解。
Q:计算得到的IC50值的数据重现性不好,有哪些需要注意的地方?
A:(1)  请确认DPPH Reagent在溶解时,管内是否有残留。

由于DPPH较难溶解,请务必使用超声振荡器充分溶解后再使用。特别需要注意管底部是否有残留。具体的判断方法请参照下图或操作说明书。

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

(2) 样品的稀释浓度间隔过大,或者抑制曲线已经达到饱和的情况下检测出来的IC50值,可能会有较大差距。因此,请务必做预实验,摸索最佳浓度范围。

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit

Q:每个试剂盒可以检测多少个样品?
A:<100 tests包装>

・每个试剂盒可以用于一块96孔板的检测

・为了确保数据的准确性,建议至少设置3个复孔,下面按照复孔数为3计算可检测的样品数。

・每个试剂盒的DPPH Reagent的量可以检测96孔板的100个孔。

(Blank 2和DPPH Reagent不需要添加,所以不计入孔数)

未知样品:可以检测1个样品

・对于未知的检测样品,需要做预实验,每个试剂盒可以检测1个样品。

<预实验的孔数:确认最佳浓度范围>

样品: 8个点(8个不同的梯度浓度系列) × 3 (3个复孔) = 24 well

Blank:1 (Blank 1) × 3 (3个复孔) = 3 well

<计算IC50所需要的孔数>

样品: 8个点(8个不同的梯度浓度系列) × 3 (3个复孔) = 24 well

Trolox:4个点(4个不同的梯度浓度稀释系列) × 3 (3个复孔) = 24 well

Blank:1 (Blank 1) × 3 (3个复孔) = 3 well

*不需要预实验时,可以多检测一个样品。

已知IC50值大致范围的样品:可以检测3个样品

・对于已知大致IC50值范围的样品,每个试剂盒可以检测3个样品。

对于不知道IC50值大致范围的未知样品,请按照操作步骤做预实验。

<计算IC50所需要的孔数>

样品: 8个点(8个不同的梯度浓度系列) × 3 (3个复孔) × 3 (3个样品)= 72 well

Trolox:4个点(4个不同的梯度浓度系列) × 3 (3个复孔) = 12 well

Blank:1 ( Blank 1) (n=3) = 3 well

 

<500 tests包装>

・每个试剂盒可以用于5块96孔板的检测(DPPH Reagent和Trolox Standard各5管)

・以下是500 tests包装可检测的样品数,100 tests包装请参考上面。

每个500 tests包装的试剂盒可以检测

(Blank 2和DPPH Reagent不需要添加,所以不计入孔数)

未知样品:可以检测8个样品

・对于未知的检测样品,需要做预实验,每个试剂盒可以检测8个样品。

<预实验的孔数:确认最佳浓度范围>

样品: 8个点(8个不同的梯度浓度系列) × 3 (3个复孔) × 8 (8个样品) = 192 well

Blank:1 (Blank 1) × 3 (3个复孔) × 3 (3块板) = 9 well

<计算IC50所需要的孔数>

样品: 8个点(8个不同的梯度浓度系列) × 3 (3个复孔) × 8 (8块板) = 192 well

Trolox:4个点(4个不同的梯度浓度稀释系列) × 3 (3个复孔) × 5 (5块板) = 60 well

Blank:1 (Blank 1) × 3 (3个复孔) × 3 (3块板) = 9 well

Q:如果从开始反应到检测的时间间隔比较长,是否会影响检测值?
A:如果反应时间过长,可能会影响检测结果。为了得到重现性高的检测数据,请严格按照操作说明书的步骤(25℃,30 min,避光)后,立即进行检测。检测多个孔板的时候,请保证各孔板的上机检测前的时间相同。
Q:食品样品如果进行样品的前处理?
A:关于食品样品的前处理方法,有下列检测实例供参考。<茶叶>

 

1)  取5 g 茶叶样品,加入50 ml 100℃的超纯水。

2)  在100℃下持续搅拌10 min。

3)10分钟搅拌后,用纱布过滤,并用超纯水将样品溶液调整至55 g。

4)将样品溶液转移至离心管,23℃,4000×g离心10 min。

5)用过滤膜(孔径0.45 μm)过滤上清液,制成样品溶液。

 

 

<青椒、红椒>

1) 将样品冻结干燥后用搅拌机打成粉末。

2) 取0.5 g粉末状的样品,添加2.5 g海砂和5 ml MWA提取溶剂。

(MWA溶剂的配制方法为 无水乙醇:超纯水:醋酸 = 90:9.5:0.5)

3) 搅拌10 s后,在超声波浴中37℃超声振荡5 min。

4) 23℃,1600×g离心10 min,回收上清。

5) 向沉淀物中再次加入5 ml MWA,重复步骤3,步骤4的操作3次。

6) 将所有回收得到的上清液加入25 ml容量瓶,用MWA定容作为检测样品。

Q:如果样品有混浊,是否可以检测?
A:<对于有混浊的样品>

样品中的混浊会影响检测结果。

我们尝试过用以下溶剂检测样品:水、无水乙醇、甲醇、WMA、DMSO。

*MWA溶剂的配制方法为 无水乙醇:超纯水:醋酸 = 90:9.5:0.5

*DMSO可能会造成TEAC值偏高。

如果样品不能完全溶解,仍然有混浊时,请将样品过滤后再使用。

混浊部分的抗氧化能力无法检测。

如果溶剂是水,还可以用SOD Assay Kit-WST检测。

由于DPPH的检测原理与SOD试剂盒的原理不同,可以用双指标进行验证。

另外,含有大量胡萝卜素的样品或者溶液呈紫色的样品不适用本试剂盒检测。

推荐用其他方法检测。

关联产品

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit
ROS Assay Kit -Highly Sensitive DCFH-DA-试剂
ROS检测

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit
氧化型/还原型谷胱甘肽定量试剂盒-GSSG/GSH Quantification Kit II
氧化型/还原型谷胱甘肽定量试剂盒

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit
超氧化物歧化酶检测——SOD Assay Kit
超氧化物歧化酶(SOD)检测试剂盒-WST

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit
二价铁离子检测探针—FerroOrange
细胞亚铁离子检测荧光探针

抗氧化能力检测试剂盒 (DPPH法 )货号:D678 DPPH Antioxidant Assay Kit
Liperfluo-细胞脂质过氧化物检测
细胞脂质过氧化物检测试剂盒