细胞库实践综合指南

细胞库实践综合指南

细胞培养的有效管理对于保持其在研究和治疗应用中的完整性至关重要。细胞系的连续或长期培养会导致各种并发症,例如:

  • 微生物污染:

    开放培养容易受到各种微生物感染,这些微生物会改变细胞行为和生存能力。
  • 特征变化:

    关键的细胞特征,如抗原表达或抗体产生,可能会随着时间的推移而丢失。
  • 遗传变异:

    基因组不稳定性可能发生在以核型不稳定而闻名的细胞系中,从而导致不可靠的实验结果。
  • 寿命限制:

    某些类型的细胞在进入衰老和停止增殖之前分裂次数有限。
  • 交叉污染风险:

    长期培养增加了一个细胞系污染另一个细胞系的风险,从而导致错误的数据。
  • 资源密集度:

    长期培养需要更多的消耗品和劳动力,大大增加了成本。

细胞库的战略方法

细胞库系统是减轻上述风险的战略方法。推荐的系统是主小区银行系统,包括以下步骤:

  1. 初始隔离:

    新获得的细胞培养物应在严格的检疫条件下隔离和处理,以防止实验室污染。
  2. Token Stock Establishment:

    初始培养扩增后,应冷冻保存少量安瓿瓶(3-5瓶)作为应急备用的象征性储备。
  3. 主细胞库形成:

    从代币储备安瓿瓶扩大培养物,以建立由大量安瓿瓶组成的主细胞库(10-20个或更多,根据计划使用情况而定)。
  4. 严格的质量控制:

    主细胞库的一个子集经历了全面的质量控制测试,其中包括评估细胞活力,确认不存在微生物污染物,并可能进行病毒和真实性测试。
  5. 工作细胞库的开发:

    然后使用主细胞库的一部分创建工作细胞库,这是积极研究和应用的主要来源。

详细的质量控制协议

质量控制是维护细胞库的关键部分。它包括:

  • 生存力和计数测试:

    确保细胞存活且数量充足。
  • 微生物筛选:

    定期检测细菌、真菌和支原体以防止细胞培养受损。
  • 认证程序:

    通过DNA分析等方法确认细胞系的身份。

存储和使用建议

正确的储存条件如下:

  • 专用存储设施:

    利用专门为储存细胞库设计的设施,如液氮罐或电冰柜,以防止交叉污染并确保长期生存能力。

一致性和质量保证:

  • 一致的细胞材料:

    细胞库系统确保实验中使用的所有材料都来自一致的来源。
  • 受控通道数:

    通过使用在可控传代次数范围内的细胞,实验可变性被最小化。
  • 适时文化实践:

    仅在必要时培养细胞有助于保持细胞系的原始特性,并降低与保持连续培养相关的成本。

细胞培养板的选购要看哪些因素

细胞培养板的选购要看哪些因素

  细胞培养板在进行细胞操作时同样遵循严格无菌的原则,各项操作要保证规范、科学,不对细胞的生长造成额外的影响。
  细胞培养板的选择
  1)细胞培养板依底部形状的不同可分为平底和圆底(U型和V型);
  2)培养孔的孔数有6、12、24、48、96、384、1536 孔等;
  3)根据材质的不同有Terasaki板和普通细胞培养板。具体选择时根据培养细胞的类型、所需培养体积及不同的实验目的而定。
  平底和圆底(U型和V型)培养板的区别和选择
  1)贴壁细胞一般用平底培养板。
  2)悬浮型细胞的培养一般用V型。
  3)U型培养板亦多用于培养悬浮型细胞 。
  4)V型培养板有时用做免疫学血凝集的实验。
  不同型状的板子自然有不同用途
  平底的什么类型的细胞都可用,但当细胞数目较少,如做克隆时,就用96孔平底板。
  另外﹐做MTT等实验时﹐无论贴壁和悬浮细胞﹐一般均用平底板。
  至于U或V型板﹐一般在某些特殊要求时才使用。如在免疫学方面﹐当做两种不同淋巴细胞混合培养时﹐需要二者相互接触以刺激。因此﹐一般需要U型板﹐因细胞会由于重力的作用而聚集在一个很小的范围內,V型板的用途更少﹐一般用于细胞杀伤实验时﹐为了使效靶细胞紧密接触﹐常使用V型板﹐但这种实验也可用U型板替代(加入细胞后﹐低速离心)。
  如果是养细胞的话, 通常是运用平底的, 另外要特別注意材质, 标示”Tissue Culture (TC) Treated”就是养细胞用的。
  圆底的通常是拿来做分析, 化学反应, 或是保存样品用。因为圆底比较好将液体吸得干净, 如果用平底的就不好吸了。 不过, 如果你是要测吸光值的话, 一定要买平底的才行。
  大部分细胞培养都用平底培养板,便于镜下观测、有明确的底面积、细胞培养液面高度相对一致,还便于MTT检测。
  圆底培养板主要用于同位素掺入的实验,需要用细胞收集仪收集细胞的培养,如“混合淋巴细胞培养”等

bigelow培养方法介绍

bigelow培养方法介绍

培养基类型

富集培养基和人工培养基是培养基的两种主要类型。富集培养基通常通过以下两种方式制备:(1) 通过将土壤或土壤提取物添加到蒸馏水或天然水中,或 (2) 通过将营养化学品添加到天然水(例如海水或湖水)中。人工介质仅使用“纯”水和“纯”化学品;它不包括添加未定义的土壤或天然湖泊或海水。然而,认识到即使是精心制备的人工培养基中也存在未知的“杂质”,这一点非常重要。

富含土壤和水的介质适合维持藻类培养。良好的土壤提供无机和有机物质——藻类生长良好,并且培养引起的形态变化是有限的。

通过化学浓缩海水制备的海洋介质很常见。然而,使用湖水或河水进行化学富集的淡水培养并不常见。相反,人工培养基对于许多淡水藻类的生长来说很常见并且非常成功,但仅当无法使用天然海水基础进行关键研究时才使用海洋人工培养基。例如,出于研究微量元素的目的,使用精心定义的人造海水介质来最小化或排除已知污染物。

类似地,水质、玻璃/塑料器皿清洁度等以与化学质量相同的方式影响培养基,即不良或有毒物质的存在以及所需物质的缺乏会影响藻类生长。培养基和培养容器可以通过蒸汽高压灭菌、巴氏灭菌、过滤或微波进行灭菌。

培养容器和材料

用于培养培养物和储存培养基的所有容器和管道均应仔细选择,以避免有毒化合物。我们推荐使用硼硅酸盐玻璃或组织培养级聚碳酸酯和聚苯乙烯塑料器皿制成的烧瓶和试管。黑色试管螺帽应在海水变化时高压灭菌几次,因为新瓶盖在加热时可能会释放出有毒的酚类物质。

同样,橡胶塞(或任何其他在加热时释放有气味的挥发性化合物的东西)应与介质分开进行高压灭菌。应避免使用带有铜管的老式高压灭菌器,因为过量的铜对藻类有毒。高压灭菌器蒸汽本身可能被金属污染,并且培养基可能对开放海洋物种产生金属毒性。

新的玻璃器皿应在稀 NaOH 中脱脂。玻璃器皿可以定期用稀盐酸清洗,或者,如果担心金属污染,建议在浓盐酸中长时间浸泡。玻璃器皿不应该用铬酸清洗,因为铬对许多浮游植物有毒。烧瓶可以用用粗棉布、硅胶海绵包裹的棉塞或用烧杯盖住的塞子盖住。由箔或塑料烧杯制成的盖可以防止真菌在潮湿的塞子中生长。

大多数科学家在准备培养物时会丰富天然海水。海水来源可能会影响成功。一些沿海水域的盐度降低,某些菌株可能无法忍受。NCMA 使用来自缅因湾的原始水,其盐度约为 32 psu。在水华期间不应收集海水,特别是当存在有毒生物时。可以使用过滤器(例如 0.45 µm 玻璃纤维过滤器)去除天然浮游植物。可以通过添加来去除溶解的有机污染物每升加入一到几克活性炭粉末并充分混合。第二天通过倾析和过滤除去碳。

为了简化常规培养基制备,通常制备工作储备溶液。添加少量液体储备溶液比称量单个干化学品更容易、更快捷。最好将原液添加到水中并混合 – 直接混合原液而不用水稀释可能会导致不良沉淀。营养强化剂要么在灭菌前添加,要么在灭菌后无菌添加。灭菌是通过在 121°C、15 lb/in2 下高压灭菌 15 分钟或更长时间来完成,具体取决于所涉及的体积。高压灭菌后应尽快冷却培养基以避免沉淀。二氧化硅可以增强沉淀,因此如果藻类不需要硅,最好将硅酸盐排除在培养基之外。

营养物质可能会被细菌或真菌污染。因此,谨慎的做法是首先对原液进行高压灭菌,然后采用良好的无菌技术。应仔细密封储备溶液,因为蒸发会浓缩营养储备。维生素库存可以冷冻很长时间而不会明显降解。在玻璃容器中高压灭菌 Na2SiO3 储备溶液可能会导致二氧化硅蚀刻或碎片状沉淀。因此,我们建议在聚四氟乙烯涂层瓶中制备硅酸盐储备溶液。

高压灭菌后,培养基应放置约 24 小时,同时气体(尤其是 CO2)扩散到液体中。通过快速冷却可以最大限度地减少沉淀。对于大多数海水介质来说,最终 pH 值为 7.8-8.2 是理想的。

细菌保存指南:冷藏、冷冻和冷冻干燥

细菌保存指南:冷藏、冷冻和冷冻干燥

在原种培养物、突变菌株和基因工程变体之间,任何一个实验室可以积累的单个细菌培养物的数量可能很多。事实上,在设计一个质粒的过程中产生的变异数量可能是惊人的。大多数实验室都会保留所有这些和其他变化,因为你永远不知道明天可能需要什么。因此,保存所有这些细菌培养物和遗传变异是需要深思熟虑的事情。 

加盖试管中的细菌培养物处于封闭环境中。尽管培养物开始时可能是健康的,但随着时间的推移,活细胞的数量将减少到零。保存培养物的目的是降低死亡率,以便在重新进行培养物时,一些细胞仍然存活并可用于培养。细胞死亡的原因可能有很多,但在每种情况下都是基于细胞及其环境的固有化学性质。如果有害的化学反应可以减慢或停止,那么整个培养物将在更长的时间内保持活力。   

有两种基本方法可以减缓细菌培养物中有害反应的速度。第一个是降低温度,从而降低所有化学反应的速率。这可以使用冰箱、机械冷冻机和液氮冷冻机来完成。第二种选择是从培养物中去除水,这个过程可能很棘手,并且涉及使用冻干机升华水。   

以下是保存细菌的主要选择的简要讨论。报告了每个选项的优点和缺点。 

冷藏

细菌在 4°C 下可以短暂存活。对于每天或每周使用的菌株,在琼脂斜面或平板上生长的培养物可以储存在冰箱中,前提是已采取预防措施以避免污染。应使用标准技术制备培养物,然后在储存前密封。对于倾斜,我们建议使用螺旋盖管。对于培养皿上的培养物,需要用封口膜密封培养皿。密封板不仅有助于防止霉菌潜入板中,而且还能减缓琼脂的干燥速度。对于超过一周或两周的情况,培养物可以以刺的形式储存在小平底螺旋盖小瓶中。在该技术中,小瓶中充满少量琼脂培养基(例如1ml)并灭菌。然后用无菌针将细菌引入固化的琼脂中。将培养物用松盖孵育过夜,然后用紧盖保存在 4°C 下。储存在刺棒中的培养物更能抵抗干燥和污染,但它们会比冷冻储存更快地失去活力。刺伤可以保持活力的时间长度取决于应变。一些手册声称刺针可以使用一年,但除非经过测试,否则做出这种假设是不明智的。刺伤可以保持活力的时间长度取决于应变。一些手册声称刺针可以使用一年,但除非经过测试,否则做出这种假设是不明智的。刺伤可以保持活力的时间长度取决于应变。一些手册声称刺针可以使用一年,但除非经过测试,否则做出这种假设是不明智的。 

冷冻

冷冻是储存细菌的好方法。一般来说,储存温度越低,培养物保留活细胞的时间越长。冷冻柜可分为三类:实验室冷冻柜、超低温冷冻柜和低温冷冻柜。储存在冰箱中的细菌(和其他细胞)面临的问题是冰晶。冰会因局部盐浓度增加导致脱水而损害细胞。当水转化为冰时,溶质积聚在残留的游离水中,这种高浓度的溶质会使生物分子变性。冰也会使细胞膜破裂,尽管这个问题通常与缺乏细胞壁的细胞有关,例如培养的动物细胞。为了减轻冷冻的负面影响,甘油经常被用作冷冻保护剂。许多鱼类和昆虫都会产生甘油,通过降低细胞的冰点、增强过冷以及防止结冰来抵御寒冷的温度。对于细菌,添加甘油至终浓度 15% 将有助于保持细胞在所有冷冻条件下存活。以下是每个冷冻机类别的一些具体信息。 

实验室冷冻柜可以将温度降低至 -20 至 -40°C。这些是单级系统(一台压缩机),通常称为通用冷冻机。细菌可以在通用冰箱中保存中等时间,例如1年。最好使用没有无霜温度循环的冰箱,因为这会对细胞和其他温度敏感的生物分子造成严重破坏。通用冰箱价格便宜,在大多数实验室都有,因此它们很容易用于储存培养物。缺点是它们的温度不够低,无法长期储存。 

超低温冰箱是两级系统(两个压缩机,每个压缩机具有不同的制冷剂),可降至 -86°C 左右。超低温冰箱非常普遍,但其中的空间有时可能有限且竞争激烈。超低温冰箱的购买、运行和维护成本也高得多。好处是,储存在 -80°C 下的细胞往往可以保持存活数年。超低温冰箱产生的较低温度大大减少了培养物内的化学反应。然而,冷冻细胞中仍然发生分子运动,因此培养物的活力将会下降。定期监测培养物以评估其生存能力非常重要。   

低温冷冻柜非常冷,依靠液氮或专门的机械系统来运行。对于生物样品,低温储存应低于-130°C。在此温度下,水的分子运动停止,细胞被困在玻璃状基质中。储存在低温冰箱中的细菌可以保持其活力多年。在我们的实验室中,细菌和酵母培养物已在 -140°C 下保存 15 年,活力没有明显丧失。与冷冻干燥相比,在低温冰箱中储存细胞是有效且简单的长期储存方法。其缺点是成本以及库存对停电、机械故障和液氮交付失败的潜在脆弱性。此外,管子切勿存放在浸没液氮的罐中。螺旋盖管泄漏,会将氮气和污染物一起吸入管中。液氮气相冷冻机将有效地避免这个问题,但这些冷冻机非常昂贵(高达1万美元)并且需要大量液氮。另一种选择是机械低温冷冻机,温度可低至 -150°C,但购买成本也非常昂贵(约 2 万美元)。两台低温冷冻机的运行费用每月为数百美元。但这些冷冻机非常昂贵(高达 1 万美元)并且需要大量液氮。另一种选择是机械低温冷冻机,温度可低至 -150°C,但购买成本也非常昂贵(约 2 万美元)。两台低温冷冻机的运行费用每月为数百美元。但这些冷冻机非常昂贵(高达 1 万美元)并且需要大量液氮。另一种选择是机械低温冷冻机,温度可低至 -150°C,但购买成本也非常昂贵(约 2 万美元)。两台低温冷冻机的运行费用每月为数百美元。   

冷冻干燥

在水系统(例如活细胞)中,水不仅充当酶促反应的介质,而且还充当自发的负面反应(例如自由基形成)。除去水会停止酶促反应和非酶促反应。冷冻干燥是去除这种水的一种方法。通过冷冻干燥可以非常有效地保存许多细菌。通过将细胞冷冻在含有冻干保护剂(通常是蔗糖)的介质中,然后使用真空吸出水(升华),可以有效保存细胞。这种方法很费力,需要专门的设备,但它的优点是可以产生不受停电和空液氮罐影响的原种培养物。此外,如果培养物定期运送到其他实验室,冻干培养物不需要特殊处理。冷冻干燥的缺点是并非所有培养物都以相同的方式反应,因此需要进行一些实验来优化每种菌株的工艺。对于任何认真生产和维护培养物保藏的实验室,冷冻干燥应作为主要的保存方法。 

微生物培养的污染因素及预防方法

微生物培养的污染因素及预防方法

随着现代生物学研究的发展,微生物培养成为了重要的实验手段之一。然而,在进行微生物培养过程中,存在着许多污染因素,这些污染因素可能会对实验结果产生影响或者导致实验结果不准确。下面将介绍一些常见的微生物培养的污染因素以及相应的预防方法。

1.培养箱内的风速和风向对于保持温度的均一性以及避免污染都非常重要。一般来说,适当的风速和风向可以帮助培养箱内的温度保持均一,有利于微生物的正常生长。然而,当风速过大时,可能会导致培养基干裂,从而影响培养结果的准确性。另外,药典要求培养皿倒置培养,这是因为经过多次验证发现,当培养箱运行时的风向与培养皿盖的朝向不一致时,容易引入空气中的灰尘、杂菌等,从而污染培养物。因此,在使用培养箱的过程中,需要注意风速和风向的控制,并尽量与培养皿盖的朝向一致。

2.培养皿由平底和盖组成,一些微生物实验室常用的培养皿直径为90mm,采用顶盖封装。然而,由于不同厂家制造的培养皿的成型工艺和参数不同,平底和盖之间的间隙也存在差异。这些间隙虽然能够满足需氧型微生物对氧气的需求,但也增加了污染的可能性。经过实验证实,在同样的培养条件下,间隙大的培养皿比间隙小的培养皿更容易受到污染。此外,间隙的大小不同还会导致培养皿内培养基的水分蒸发不一致,从而影响培养结果数据的一致性。因此,在使用培养皿的过程中,需要选择质量可靠的培养皿,并注意平底和盖之间的间隙情况。
3.微生物生长需要一定的湿度条件。湿度对微生物生长的影响是通过影响微生物细胞内水分活度进而影响其新陈代谢来实现的。不同微生物的生长对湿度有一定的要求,一般来说,细菌最为敏感,酵母和霉菌次之。降低湿度会使微生物的水分活度降低,从而减慢其生长速度。因此,在微生物培养的过程中,需要保持适宜的温度和湿度,以有利于微生物的生长。培养箱内湿度的来源主要有培养基的水分散失、湿度自动调控系统以及培养箱所在的环境。因此,在使用培养箱的过程中,需要控制湿度,保持适宜的生长环境。

4.培养物溢洒是指含有生物危险物质的液体或固体物质意外与包装材料分离的过程。一旦发生生物危害物品的溢出,尤其是含病原微生物的培养物的溢出时,会导致微生物的生长和繁殖,从而引起培养箱的污染。为了预防交叉污染,当发生培养物溢洒时,需要及时清理和消毒培养箱。应该使用有效的消毒剂对培养箱的内壁以及接触溢出物品的材料进行消毒或高压灭菌。此外,如果溢洒物中含有破碎的玻璃等材料,不得直接用手取走或弃置,应该使用硬纸板和镊子等工具处理,并将处理物放置在安全的废弃物容器中。最后,对清洁工具也需要进行消毒处理,以确保卫生安全。

5.培养箱需要放置在洁净、干燥、通风良好的自然环境中。如果环境中空气洁净度不够高,容易滋生细菌、真菌和病毒等微生物,并通过平底和盖之间的间隙污染培养基,从而影响培养结果数据的准确性。因此,在使用培养箱的过程中,需要注意放置环境的卫生和通风状况,尽量避免自然环境的污染。


综上所述,微生物培养过程中存在着多种污染因素,这些因素可能会对实验结果产生影响或导致实验结果不准确。为了保证实验结果的准确性,需要在使用培养箱进行微生物培养时,注意控制风速和风向、选择合适的培养皿、控制湿度、避免培养物溢洒以及注意自然环境的卫生状况。只有这样,我们才能够获得可靠且准确的微生物培养结果。