上海金畔社生物科技有限公司日本同仁化学dojindo全线产品代理 中国代理商
特点:
● 细胞上清液和细胞样品均适用
● 操作简便
● 灵敏度高最低可检测到0.02 mmol/l的乳酸
● 试剂稳定性高
● 享有显色底物WST专利
产品解说
活动进行中
订购满5000元,200元礼品等你拿
凑单关联产品TOP5
NO.1. Cell Counting Kit-8 细胞增殖毒性检测
NO.2. FerroOrange 细胞亚铁离子检测
NO.3. Glucose Assay Kit-WST 葡萄糖检测
NO.4. Liperfluo 细胞脂质过氧化物检测
NO.5. MitoPeDPP 线粒体内脂质过氧化物检测
试剂盒内含
概述
乳酸是细胞的一种主要代谢途径-糖酵解的代谢产物,也是肌肉疲劳和高乳酸血症的重要生物标志物。它还可以作为监测细胞内代谢途径变化的标志物。此外最近的代谢研究表明,乳酸是组织和癌细胞的三羧酸循环中碳的主要来源。
Lactate Assay Kit-WST®可用于定量检测糖酵解代谢产生的乳酸,并优化了定量过程。本试剂盒通过测定WST®的显色反应来定量细胞上清液中的乳酸含量,可用96孔板检测,灵敏度高,最低可检测到0.02 mmol/l的乳酸。
WST®:WST是日本同仁化学研究所的注册商标
原理
本试剂盒通过测定WST的显色反应来定量细胞上清或细胞内的乳酸含量。
另外,试剂盒中含有乳酸标准液,可以通过制备标准曲线来定量样品中的乳酸浓度。
特点
特点1:操作简单,只需要加入试剂
只需在加入细胞裂解液的细胞上清液中加入试剂,培养即可。
特点2:试剂稳定性高
乳酸标准曲线
可以从使用试剂盒中的乳酸标准液制作出乳酸标准曲线,然后通过标准曲线求出样品中的乳酸浓度。
当乳酸浓度在1 mmol/l以上时,可以通过稀释样品进行检测。
实验例
2-脱氧-D-葡萄糖对糖酵解的抑制作用
1、在96孔板中接种1×104个/孔的HeLa细胞(MEM培养基中含有10%胎牛血清和1%青霉素-链霉素),在37℃,5% CO2培养箱中过夜培养。
2、去除上清液后,在培养基中加入100 µl配制好的系列浓度的2-脱氧-D-葡萄糖溶液。
3、在37℃,5% CO2培养箱中过夜培养。
4、培养后,吸取20 µl细胞上清液至1.5 ml微量管中,并用超纯水稀释8倍制备样品溶液,然后按照说明书的图3在每孔中加入20 µl样品溶液。
5、按照“配制乳酸标准液”的方法配制乳酸标准液。
6、在96孔板中按照说明书的图3在每孔中加入20 µl各种浓度的乳酸标准液。
7、在每孔中加入80 µl工作液。
8、在37℃培养箱中培养30 min。
9、用酶标仪测定450 nm的吸光度,并用标准曲线计算样品的乳酸浓度。
2-脱氧-D-葡萄糖对糖酵解的抑制作用,随着2-脱氧-D-葡萄糖 (一种糖酵解抑制剂)浓度的增加,乳酸浓度逐渐减少
葡萄糖和乳酸的测定例
用葡萄糖测定试剂盒(货号:G264)和乳酸测定试剂盒检测(货号:L256):检测将葡萄糖转运蛋白抑制剂Phloretin添加到Jurkat细胞时的代谢活性变化。
■实验条件
细胞:Jurkat细胞(5×105细胞)
药物:Phloretin(终浓度:100 µmol/l)
培养时间:过夜培养
■结果
Phloretin的添加抑制了葡萄糖的摄取,减少了葡萄糖的消耗,增加了培养基中葡萄糖的量,并减少了乳酸的量。
常见问题Q&A
Q:使用含有血清的培养基,可以测定培养上清液中的乳酸吗? |
A:使用含有血清的培养基,可以测定培养上清液中的乳酸。 但是在含有血清的情况下,由于背景上升,需要测定培养基OD值并将其作为背景对照减去。 【参考数据】 含和不含10%FBS的吸光度比较 <结果> |
Q:如何检测细胞内乳酸含量? |
(1)用微量管收集1×105的细胞*1。
(2)以300×g离心2 min后去除上清液。 (3)加入300 μl的PBS,用移液器吹打使其重悬,再以300×g离心2 min后去除上清液。 (5)以8000×g离心5 min,收集上清液。 *1、样品为HeLa细胞时,为了检测出0.02 mmol/l以上的乳酸含量,需要1×105的细胞甚至更多。 *3、内源性乳酸脱氢酶(LDH)会导致背景增高,因此通过脱蛋白处理去除内源性乳酸脱氢酶 (LDH)。 |
Q:配制后的Working Solution稳定性如何,可以保存多久? |
A:Working Solution需要现配现用。 光会影响Working Solution的稳定性,所以配制后请用铝箔纸包裹。 配制后的Working Solution在室温避光条件下可以保存4 h。 (Working Solution遇到光,溶液的颜色会由红色变为橙色,背景会升高。) |
Q:为什么我的样品孔没有显色? |
A:样品中的乳酸浓度可能低于检测限(0.02 mmol/l)。 乳酸浓度低于0.02 mmol/l的样品无法用该试剂盒检测,因此请考虑其他方法,如LC-MS。 如果待测样品被稀释,则稀释样品中含有的乳酸浓度可能低于0.02 mmol/l。 请降低稀释比例,从而将检测样品的乳酸浓度调整到最低检测限以上。 |
Q:是否可以检测含有还原性物质的样品? |
A:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量乳酸浓度。 实验中如遇到以上情况,可以设定药物对照(不含细胞含药物的培养基+试剂), 并将标准品孔和样品孔的吸光度分别减去药物对照的吸光度。 |
Q:该试剂盒可以定量D-Lactate吗? |
A:该试剂盒是用于L-Lactate的定量,不能定量D-Lactate。 |
Q:是否可以使用450 nm以外波长的滤光片进行检测? |
A:也可以使用490 nm的滤光片, 但是吸光度会低于在450 nm处的吸光度。 |
Q:一个试剂盒可以检测样品的数量。 |
A:制备标准曲线和样品(n=3)时,可以检测的样品数量如下所示。
标准曲线:8个点(0, 0.0157, 0.0313, 0.0625, 0.125, 0.25, 0.5, 1 mmol/l)(n=3) 96孔板排列示意图(n=3) |
参考文献
编号 | 文献名 | 年分 | IF |
1 | Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1 | 2022 | 23.2 |
2 | Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine | 2020 | 19.9 |
3 | YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload |
2022 | 19.5 |
4 | Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine, Nature Metabolism,2020, 2,81–96 |
2020 | 13.5 |
5 | Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis, Biomaterials,2021, 269:120631 | 2020 | 12.8 |
6 | Metabolome Analysis Reveals Excessive Glycolysis via PI3K/AKT/mTOR and RAS/MAPK Signaling in Methotrexate-Resistant Primary CNS Lymphoma-Derived Cells, Clinical Cancer Research,2020, 26(11):2754-2766 | 2020 | 11.2 |
7 | Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma | 2021 | 9.8 |
8 | Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1 | 2021 | 8.8 |
9 | PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification, Oncogenesis,2021, 10(3):25 | 2021 | 7.5 |
10 | An iPSC-based neural model of sialidosis uncovers glycolytic impairment-causing presynaptic dysfunction and deregulation of Ca2+ dynamics | 2021 | 7.1 |
11 | Tumor cell-derived angiopoietin-like protein 2 establishes a preference for glycolytic metabolism in lung cancer cells,Cancer Science,2020, 111(4):1241-1253 | 2020 | 6.7 |
12 | Tumor cell-derived angiopoietin-like protein 2 establishes a preference for glycolytic metabolism in lung cancer cells | 2020 | 6.5 |
13 | Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions | 2020 | 6.2 |
14 | Metabolites Produced by a New Lactiplantibacillus plantarum Strain BF1-13 Isolated from Deep Seawater of Izu-Akazawa Protect the Intestinal Epithelial Barrier from the Dysfunction Induced by Hydrogen Peroxide | 2022 | 6.1 |
15 | MicroRNA-505, Suppressed by Oncogenic Long Non-coding RNA LINC01448, Acts as a Novel Suppressor of Glycolysis and Tumor Progression Through Inhibiting HK2 Expression in Pancreatic Cancer | 2021 | 6.1 |
16 | Matrine Promotes Human Myeloid Leukemia Cells Apoptosis Through Warburg Effect Mediated by Hexokinase 2, Frontiers in Pharmacology,2019, 10:1069 | 2019 | 5.8 |
17 | Mutant KRAS drives metabolic reprogramming and autophagic flux in premalignant pancreatic cells | 2021 | 5.8 |
18 | Long Non-Coding RNA TMPO-AS1 Promotes GLUT1-Mediated Glycolysis and Paclitaxel Resistance in Endometrial Cancer Cells by Interacting With miR-140 and miR-143 | 2022 | 5.7 |
19 | Circ_0002111/miR-134-5p/FSTL1 signal axis regulates tumor progression and glycolytic metabolism in papillary thyroid carcinoma cells | 2022 | 5.5 |
20 | SIRT3-Mediated SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells, Annals of Surgical Oncology,2021, 28(8):4720-4732 | 2021 | 5.3 |
21 | Metabolic changes in synovial cells in early inflammation: Involvement of CREB phosphorylation in the anti-inflammatory effect of 2-deoxyglucose | 2021 | 4.1 |
22 | Novel pharmacological effects of poly (ADP-ribose) polymerase inhibitor rucaparib on the lactate dehydrogenase pathway, Biochemical and Biophysical Research Communications,2019, 510(4):501-507 | 2019 | 3.6 |
23 | Neopetrosidines A–D, pyridine alkaloids isolated from the marine sponge Neopetrosia chaliniformis and their cell cycle elongation activity |
2021 | 3.5 |
24 | Novel pharmacological effects of poly (ADP-ribose) polymerase inhibitor rucaparib on the lactate dehydrogenase pathway | 2019 | 3.3 |
25 | Circ_0000442 functions as a tumor repressor in breast cancer by impacting miR-1229-3p and upregulating ZBTB1 | 2020 | 2.5 |
26 | Suppressive Effects of Anisomycin on the Proliferation of B16 Mouse Melanoma Cells In Vitro | 2021 | 2.1 |
27 | Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration | 2023 | 15.1 |
28 | Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage | 2023 | 4.6 |
29 | Exosomes secreted by ST3GAL5high cancer cells promote peritoneal dissemination by establishing a premetastatic microenvironment | 2023 | 6.6 |